Training complete
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: bert-base-
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# bert-finetuned-ner
|
44 |
|
45 |
-
This model is a fine-tuned version of [bert-base-
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,8 +68,8 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.41.2
|
90 |
-
- Pytorch 2.
|
91 |
-
- Datasets 2.
|
92 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9271228359439406
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9463143722652305
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9366203048221869
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9868937360001271
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# bert-finetuned-ner
|
44 |
|
45 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0532
|
48 |
+
- Precision: 0.9271
|
49 |
+
- Recall: 0.9463
|
50 |
+
- F1: 0.9366
|
51 |
+
- Accuracy: 0.9869
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.2141 | 1.0 | 878 | 0.0595 | 0.9003 | 0.9305 | 0.9152 | 0.9836 |
|
83 |
+
| 0.0449 | 2.0 | 1756 | 0.0529 | 0.9236 | 0.9455 | 0.9344 | 0.9861 |
|
84 |
+
| 0.0243 | 3.0 | 2634 | 0.0532 | 0.9271 | 0.9463 | 0.9366 | 0.9869 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.41.2
|
90 |
+
- Pytorch 2.1.2
|
91 |
+
- Datasets 2.19.2
|
92 |
- Tokenizers 0.19.1
|