upendrawappgo commited on
Commit
544d1b2
·
verified ·
1 Parent(s): ece1973

Training complete

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9361032941565965
29
  - name: Recall
30
  type: recall
31
- value: 0.9516997643890945
32
  - name: F1
33
  type: f1
34
- value: 0.9438371025619627
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.986489668570083
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # bert-finetuned-ner
44
 
45
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0618
48
- - Precision: 0.9361
49
- - Recall: 0.9517
50
- - F1: 0.9438
51
- - Accuracy: 0.9865
52
 
53
  ## Model description
54
 
@@ -68,8 +68,8 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 8
72
- - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0756 | 1.0 | 1756 | 0.0717 | 0.9003 | 0.9318 | 0.9158 | 0.9798 |
83
- | 0.0351 | 2.0 | 3512 | 0.0689 | 0.9281 | 0.9456 | 0.9368 | 0.9843 |
84
- | 0.0244 | 3.0 | 5268 | 0.0618 | 0.9361 | 0.9517 | 0.9438 | 0.9865 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.41.2
90
- - Pytorch 2.3.0+cu121
91
- - Datasets 2.20.0
92
  - Tokenizers 0.19.1
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9271228359439406
29
  - name: Recall
30
  type: recall
31
+ value: 0.9463143722652305
32
  - name: F1
33
  type: f1
34
+ value: 0.9366203048221869
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9868937360001271
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # bert-finetuned-ner
44
 
45
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0532
48
+ - Precision: 0.9271
49
+ - Recall: 0.9463
50
+ - F1: 0.9366
51
+ - Accuracy: 0.9869
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2141 | 1.0 | 878 | 0.0595 | 0.9003 | 0.9305 | 0.9152 | 0.9836 |
83
+ | 0.0449 | 2.0 | 1756 | 0.0529 | 0.9236 | 0.9455 | 0.9344 | 0.9861 |
84
+ | 0.0243 | 3.0 | 2634 | 0.0532 | 0.9271 | 0.9463 | 0.9366 | 0.9869 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.41.2
90
+ - Pytorch 2.1.2
91
+ - Datasets 2.19.2
92
  - Tokenizers 0.19.1