--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 base_model: - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 model-index: - name: Rose-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B name: Open LLM Leaderboard --- # Rose-2x7B Rose-2x7B is a Mixure of Experts (MoE) made with the following models using [Mergekit](https://github.com/cg123/mergekit): * [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ```bash mergekit-moe mergekit_moe.yaml merge --copy-tokenizer --device cuda --low-cpu-memory ``` ## 🧩 Configuration ```yaml base_model: uproai/ros-7b-v1 experts: - source_model: maywell/PiVoT-0.1-Starling-LM-RP positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - source_model: WizardLM/WizardMath-7B-V1.1 positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" tokenizer_source: union ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "uproai/Rose-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uproai__Rose-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.93| |AI2 Reasoning Challenge (25-Shot)|65.27| |HellaSwag (10-Shot) |85.70| |MMLU (5-Shot) |64.37| |TruthfulQA (0-shot) |49.32| |Winogrande (5-shot) |79.79| |GSM8k (5-shot) |69.14|