wonhosong commited on
Commit
6485505
·
1 Parent(s): 1b47ea4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -0
README.md CHANGED
@@ -45,6 +45,7 @@ pipeline_tag: text-generation
45
  ```python
46
  import torch
47
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
 
48
  tokenizer = AutoTokenizer.from_pretrained("upstage/Llama-2-70b-instruct-v2")
49
  model = AutoModelForCausalLM.from_pretrained(
50
  "upstage/Llama-2-70b-instruct-v2",
@@ -53,10 +54,12 @@ model = AutoModelForCausalLM.from_pretrained(
53
  load_in_8bit=True,
54
  rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
55
  )
 
56
  prompt = "### User:\nThomas is very healthy, but he has to go to the hospital every day. What could be the reasons?\n\n### Assistant:\n"
57
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
58
  del inputs["token_type_ids"]
59
  streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
 
60
  output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
61
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
62
  ```
 
45
  ```python
46
  import torch
47
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
48
+
49
  tokenizer = AutoTokenizer.from_pretrained("upstage/Llama-2-70b-instruct-v2")
50
  model = AutoModelForCausalLM.from_pretrained(
51
  "upstage/Llama-2-70b-instruct-v2",
 
54
  load_in_8bit=True,
55
  rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
56
  )
57
+
58
  prompt = "### User:\nThomas is very healthy, but he has to go to the hospital every day. What could be the reasons?\n\n### Assistant:\n"
59
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
60
  del inputs["token_type_ids"]
61
  streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
62
+
63
  output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
64
  output_text = tokenizer.decode(output[0], skip_special_tokens=True)
65
  ```