Limerobot commited on
Commit
e2f434b
1 Parent(s): 78f6d96

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -1
README.md CHANGED
@@ -1 +1,87 @@
1
- TBD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - upstage
6
+ - llama-2
7
+ - instruct
8
+ - instruction
9
+ pipeline_tag: text-generation
10
+ datasets:
11
+ - psmathur/WizardLM_Orca
12
+ ---
13
+ # LLaMa-2-70b-instruct-v2 model card
14
+
15
+ ## Model Details
16
+
17
+ * **Developed by**: [Upstage](https://en.upstage.ai)
18
+ * **Backbone Model**: [LLaMA-2](https://github.com/facebookresearch/llama/tree/main)
19
+ * **Language(s)**: English
20
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
21
+ * **License**: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
22
+ * **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/Llama-2-70b-instruct-1024/discussions)
23
+ * **Contact**: For questions and comments about the model, please email `[email protected]`
24
+
25
+ ## Dataset Details
26
+
27
+ ### Used Datasets
28
+ - Internal Orca-style dataset
29
+ - [psmathur/WizardLM_Orca](https://huggingface.co/datasets/psmathur/WizardLM_Orca)
30
+
31
+ > No other data was used except for the dataset mentioned above
32
+
33
+ ### Prompt Template
34
+ ```
35
+ ### System:
36
+ {System}
37
+ ### User:
38
+ {User}
39
+ ### Assistant:
40
+ {Assistant}
41
+ ```
42
+
43
+ ## Hardware and Software
44
+
45
+ * **Hardware**: We utilized an A100x8 * 4 for training our model
46
+ * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
47
+
48
+ ## Evaluation Results
49
+
50
+ ### Overview
51
+ - We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
52
+ We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`.
53
+ We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463).
54
+
55
+ ### Main Results
56
+ | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
57
+ |-----------------------------------------------|---------|-------|-----------|-------|------------|
58
+ | **Llama-2-70b-instruct-v2** (***Ours***, ***Local Reproduction***) | **72.7** | **71.6** | **87.7** | **69.7** | **61.6** |
59
+ | Llama-2-70b-instruct (Ours, Local Reproduction) | 72.0 | 70.7 | 87.4 | 69.3 | 60.7 |
60
+ | llama-65b-instruct (Ours, Local Reproduction) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 |
61
+ | Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 |
62
+ | llama-30b-instruct-2048 (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 |
63
+ | llama-30b-instruct-2048 (Ours, Local Reproduction) | 67.0 | 64.9 | 85.0 | 61.9 | 56.0 |
64
+ | llama-30b-instruct (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 |
65
+ | llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 |
66
+ | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 |
67
+
68
+ ### Scripts
69
+ - Prepare evaluation environments:
70
+ ```
71
+ # clone the repository
72
+ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
73
+ # check out the specific commit
74
+ git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
75
+ # change to the repository directory
76
+ cd lm-evaluation-harness
77
+ ```
78
+
79
+ ## Ethical Issues
80
+
81
+ ### Ethical Considerations
82
+ - There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process.
83
+
84
+ ## Contact Us
85
+
86
+ ### Why Upstage LLM?
87
+ - [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. Our 30B model **outperforms all models around the world**, positioning itself as the leading performer. Recognizing the immense potential in implementing private LLM to actual businesses, we invite you to easily apply private LLM and fine-tune it with your own data. For a seamless and tailored solution, please do not hesitate to reach out to us. ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm).