--- license: mit base_model: Clinical-AI-Apollo/Medical-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Medical-NER results: [] --- # Medical-NER This model is a fine-tuned version of [Clinical-AI-Apollo/Medical-NER](https://huggingface.co/Clinical-AI-Apollo/Medical-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1694 - Precision: 0.9149 - Recall: 0.8666 - F1: 0.8901 - Accuracy: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0013 | 1.0 | 4159 | 0.1694 | 0.9149 | 0.8666 | 0.8901 | 0.9427 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1