--- base_model: dmis-lab/biobert-base-cased-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: cer_model-iii results: [] --- # cer_model-iii This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2146 - Precision: 0.9186 - Recall: 0.8689 - F1: 0.8931 - Accuracy: 0.9355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0124 | 1.0 | 4841 | 0.2169 | 0.9157 | 0.8545 | 0.8841 | 0.9272 | | 0.0025 | 2.0 | 9682 | 0.2221 | 0.9180 | 0.8708 | 0.8938 | 0.9318 | | 0.0001 | 3.0 | 14523 | 0.2146 | 0.9186 | 0.8689 | 0.8931 | 0.9355 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1