--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - rouge - sacrebleu model-index: - name: test_llm_nllb_colab_100_b2_e_12clrlinearreload results: [] --- # test_llm_nllb_colab_100_b2_e_12clrlinearreload This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5442 - Rouge1: 0.6187 - Rouge2: 0.3907 - Rougel: 0.573 - Sacrebleu: 23.8256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 237 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.5035 | 1.0 | 2040 | 0.4985 | 0.5886 | 0.3527 | 0.5463 | 21.1436 | | 0.4211 | 2.0 | 4080 | 0.4785 | 0.6043 | 0.3695 | 0.5589 | 22.5082 | | 0.3277 | 3.0 | 6120 | 0.4776 | 0.6153 | 0.3792 | 0.5695 | 22.6802 | | 0.2883 | 4.0 | 8160 | 0.4826 | 0.6142 | 0.3823 | 0.5695 | 23.3872 | | 0.2641 | 5.0 | 10200 | 0.4900 | 0.6215 | 0.3881 | 0.5752 | 23.6105 | | 0.2295 | 6.0 | 12240 | 0.5038 | 0.6166 | 0.3844 | 0.5709 | 23.3196 | | 0.185 | 7.0 | 14280 | 0.5126 | 0.6155 | 0.3839 | 0.5704 | 23.4375 | | 0.1777 | 8.0 | 16320 | 0.5230 | 0.6176 | 0.3867 | 0.5722 | 23.902 | | 0.1445 | 9.0 | 18360 | 0.5305 | 0.621 | 0.3895 | 0.5735 | 23.7867 | | 0.1354 | 10.0 | 20400 | 0.5373 | 0.6138 | 0.3825 | 0.5681 | 23.5844 | | 0.1167 | 11.0 | 22440 | 0.5407 | 0.6173 | 0.3886 | 0.573 | 23.8997 | | 0.1115 | 12.0 | 24480 | 0.5442 | 0.6187 | 0.3907 | 0.573 | 23.8256 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1