utakumi commited on
Commit
7e4c8dc
·
verified ·
1 Parent(s): ff0df5d

Model save

Browse files
Files changed (1) hide show
  1. README.md +230 -0
README.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: rinna/japanese-hubert-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - common_voice_13_0
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: Hubert-common_voice-ja-demo-roma-debug-40epochs-cosine
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: common_voice_13_0
19
+ type: common_voice_13_0
20
+ config: ja
21
+ split: test
22
+ args: ja
23
+ metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 0.9991933857632587
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # Hubert-common_voice-ja-demo-roma-debug-40epochs-cosine
33
+
34
+ This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the common_voice_13_0 dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.5322
37
+ - Wer: 0.9992
38
+ - Cer: 0.1992
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 3e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 32
63
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
64
+ - lr_scheduler_type: cosine
65
+ - lr_scheduler_warmup_steps: 12500
66
+ - num_epochs: 40.0
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
72
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
73
+ | No log | 0.2660 | 100 | 16.8172 | 2.9494 | 3.4779 |
74
+ | No log | 0.5319 | 200 | 16.5502 | 2.7606 | 2.9561 |
75
+ | No log | 0.7979 | 300 | 15.8340 | 1.9101 | 1.6839 |
76
+ | No log | 1.0638 | 400 | 13.2919 | 1.0 | 0.9276 |
77
+ | 12.6588 | 1.3298 | 500 | 7.8792 | 1.0 | 0.9276 |
78
+ | 12.6588 | 1.5957 | 600 | 6.1542 | 1.0 | 0.9276 |
79
+ | 12.6588 | 1.8617 | 700 | 5.7757 | 1.0 | 0.9276 |
80
+ | 12.6588 | 2.1277 | 800 | 5.6188 | 1.0 | 0.9276 |
81
+ | 12.6588 | 2.3936 | 900 | 5.4753 | 1.0 | 0.9276 |
82
+ | 5.2353 | 2.6596 | 1000 | 5.3239 | 1.0 | 0.9276 |
83
+ | 5.2353 | 2.9255 | 1100 | 5.1676 | 1.0 | 0.9276 |
84
+ | 5.2353 | 3.1915 | 1200 | 5.0084 | 1.0 | 0.9276 |
85
+ | 5.2353 | 3.4574 | 1300 | 4.8402 | 1.0 | 0.9276 |
86
+ | 5.2353 | 3.7234 | 1400 | 4.6702 | 1.0 | 0.9276 |
87
+ | 4.4502 | 3.9894 | 1500 | 4.4957 | 1.0 | 0.9276 |
88
+ | 4.4502 | 4.2553 | 1600 | 4.3219 | 1.0 | 0.9276 |
89
+ | 4.4502 | 4.5213 | 1700 | 4.1502 | 1.0 | 0.9276 |
90
+ | 4.4502 | 4.7872 | 1800 | 3.9856 | 1.0 | 0.9276 |
91
+ | 4.4502 | 5.0532 | 1900 | 3.8343 | 1.0 | 0.9276 |
92
+ | 3.7863 | 5.3191 | 2000 | 3.6907 | 1.0 | 0.9276 |
93
+ | 3.7863 | 5.5851 | 2100 | 3.5544 | 1.0 | 0.9276 |
94
+ | 3.7863 | 5.8511 | 2200 | 3.4332 | 1.0 | 0.9276 |
95
+ | 3.7863 | 6.1170 | 2300 | 3.3063 | 1.0 | 0.9276 |
96
+ | 3.7863 | 6.3830 | 2400 | 3.2075 | 1.0 | 0.9276 |
97
+ | 3.2473 | 6.6489 | 2500 | 3.1272 | 1.0 | 0.9276 |
98
+ | 3.2473 | 6.9149 | 2600 | 3.0657 | 1.0 | 0.9276 |
99
+ | 3.2473 | 7.1809 | 2700 | 3.0164 | 1.0 | 0.9276 |
100
+ | 3.2473 | 7.4468 | 2800 | 2.9748 | 1.0 | 0.9276 |
101
+ | 3.2473 | 7.7128 | 2900 | 2.9447 | 1.0 | 0.9276 |
102
+ | 2.9649 | 7.9787 | 3000 | 2.9188 | 1.0 | 0.9276 |
103
+ | 2.9649 | 8.2447 | 3100 | 2.9006 | 1.0 | 0.9276 |
104
+ | 2.9649 | 8.5106 | 3200 | 2.8877 | 1.0 | 0.9276 |
105
+ | 2.9649 | 8.7766 | 3300 | 2.8712 | 1.0 | 0.9276 |
106
+ | 2.9649 | 9.0426 | 3400 | 2.8529 | 1.0 | 0.9276 |
107
+ | 2.8673 | 9.3085 | 3500 | 2.8439 | 1.0 | 0.9276 |
108
+ | 2.8673 | 9.5745 | 3600 | 2.8313 | 1.0 | 0.9276 |
109
+ | 2.8673 | 9.8404 | 3700 | 2.8182 | 1.0 | 0.9276 |
110
+ | 2.8673 | 10.1064 | 3800 | 2.7311 | 1.0 | 0.9276 |
111
+ | 2.8673 | 10.3723 | 3900 | 2.4997 | 1.0 | 0.9276 |
112
+ | 2.6801 | 10.6383 | 4000 | 2.2398 | 1.0 | 0.8951 |
113
+ | 2.6801 | 10.9043 | 4100 | 1.9111 | 1.0 | 0.6154 |
114
+ | 2.6801 | 11.1702 | 4200 | 1.5447 | 1.0 | 0.4341 |
115
+ | 2.6801 | 11.4362 | 4300 | 1.3182 | 1.0 | 0.3959 |
116
+ | 2.6801 | 11.7021 | 4400 | 1.1702 | 0.9996 | 0.3706 |
117
+ | 1.5214 | 11.9681 | 4500 | 1.0558 | 0.9992 | 0.3214 |
118
+ | 1.5214 | 12.2340 | 4600 | 0.9717 | 0.9988 | 0.3024 |
119
+ | 1.5214 | 12.5 | 4700 | 0.8959 | 0.9982 | 0.2874 |
120
+ | 1.5214 | 12.7660 | 4800 | 0.8399 | 0.9978 | 0.2747 |
121
+ | 1.5214 | 13.0319 | 4900 | 0.7891 | 0.9974 | 0.2657 |
122
+ | 0.8719 | 13.2979 | 5000 | 0.7484 | 0.9980 | 0.2580 |
123
+ | 0.8719 | 13.5638 | 5100 | 0.7145 | 0.9976 | 0.2523 |
124
+ | 0.8719 | 13.8298 | 5200 | 0.6852 | 0.9976 | 0.2481 |
125
+ | 0.8719 | 14.0957 | 5300 | 0.6618 | 0.9980 | 0.2487 |
126
+ | 0.8719 | 14.3617 | 5400 | 0.6400 | 0.9986 | 0.2477 |
127
+ | 0.6568 | 14.6277 | 5500 | 0.6200 | 0.9988 | 0.2449 |
128
+ | 0.6568 | 14.8936 | 5600 | 0.6032 | 0.9988 | 0.2421 |
129
+ | 0.6568 | 15.1596 | 5700 | 0.5875 | 0.9984 | 0.2395 |
130
+ | 0.6568 | 15.4255 | 5800 | 0.5776 | 0.9990 | 0.2409 |
131
+ | 0.6568 | 15.6915 | 5900 | 0.5617 | 0.9994 | 0.2360 |
132
+ | 0.548 | 15.9574 | 6000 | 0.5485 | 0.9982 | 0.2347 |
133
+ | 0.548 | 16.2234 | 6100 | 0.5394 | 0.9988 | 0.2334 |
134
+ | 0.548 | 16.4894 | 6200 | 0.5322 | 0.9984 | 0.2317 |
135
+ | 0.548 | 16.7553 | 6300 | 0.5243 | 0.9970 | 0.2320 |
136
+ | 0.548 | 17.0213 | 6400 | 0.5121 | 0.9986 | 0.2272 |
137
+ | 0.4681 | 17.2872 | 6500 | 0.5070 | 0.9990 | 0.2266 |
138
+ | 0.4681 | 17.5532 | 6600 | 0.5014 | 0.9992 | 0.2263 |
139
+ | 0.4681 | 17.8191 | 6700 | 0.4943 | 0.9986 | 0.2242 |
140
+ | 0.4681 | 18.0851 | 6800 | 0.4930 | 0.9988 | 0.2228 |
141
+ | 0.4681 | 18.3511 | 6900 | 0.4969 | 0.9986 | 0.2245 |
142
+ | 0.4198 | 18.6170 | 7000 | 0.4883 | 0.9986 | 0.2225 |
143
+ | 0.4198 | 18.8830 | 7100 | 0.4805 | 0.9986 | 0.2215 |
144
+ | 0.4198 | 19.1489 | 7200 | 0.4777 | 0.9984 | 0.2208 |
145
+ | 0.4198 | 19.4149 | 7300 | 0.4718 | 0.9988 | 0.2209 |
146
+ | 0.4198 | 19.6809 | 7400 | 0.4721 | 0.9984 | 0.2199 |
147
+ | 0.3795 | 19.9468 | 7500 | 0.4675 | 0.9984 | 0.2205 |
148
+ | 0.3795 | 20.2128 | 7600 | 0.4692 | 0.9988 | 0.2162 |
149
+ | 0.3795 | 20.4787 | 7700 | 0.4732 | 0.9986 | 0.2173 |
150
+ | 0.3795 | 20.7447 | 7800 | 0.4654 | 0.9982 | 0.2173 |
151
+ | 0.3795 | 21.0106 | 7900 | 0.4557 | 0.9986 | 0.2158 |
152
+ | 0.3504 | 21.2766 | 8000 | 0.4562 | 0.9982 | 0.2144 |
153
+ | 0.3504 | 21.5426 | 8100 | 0.4679 | 0.9982 | 0.2144 |
154
+ | 0.3504 | 21.8085 | 8200 | 0.4584 | 0.9990 | 0.2169 |
155
+ | 0.3504 | 22.0745 | 8300 | 0.4561 | 0.9982 | 0.2134 |
156
+ | 0.3504 | 22.3404 | 8400 | 0.4595 | 0.9988 | 0.2143 |
157
+ | 0.3134 | 22.6064 | 8500 | 0.4544 | 0.9986 | 0.2155 |
158
+ | 0.3134 | 22.8723 | 8600 | 0.4544 | 0.9984 | 0.2134 |
159
+ | 0.3134 | 23.1383 | 8700 | 0.4552 | 0.9984 | 0.2129 |
160
+ | 0.3134 | 23.4043 | 8800 | 0.4524 | 0.9984 | 0.2121 |
161
+ | 0.3134 | 23.6702 | 8900 | 0.4554 | 0.9986 | 0.2113 |
162
+ | 0.3014 | 23.9362 | 9000 | 0.4617 | 0.9982 | 0.2103 |
163
+ | 0.3014 | 24.2021 | 9100 | 0.4606 | 0.9978 | 0.2130 |
164
+ | 0.3014 | 24.4681 | 9200 | 0.4561 | 0.9974 | 0.2105 |
165
+ | 0.3014 | 24.7340 | 9300 | 0.4566 | 0.9984 | 0.2089 |
166
+ | 0.3014 | 25.0 | 9400 | 0.4486 | 0.9990 | 0.2119 |
167
+ | 0.2791 | 25.2660 | 9500 | 0.4542 | 0.9990 | 0.2117 |
168
+ | 0.2791 | 25.5319 | 9600 | 0.4540 | 0.9986 | 0.2095 |
169
+ | 0.2791 | 25.7979 | 9700 | 0.4419 | 0.9984 | 0.2091 |
170
+ | 0.2791 | 26.0638 | 9800 | 0.4569 | 0.9982 | 0.2074 |
171
+ | 0.2791 | 26.3298 | 9900 | 0.4543 | 0.9984 | 0.2090 |
172
+ | 0.2564 | 26.5957 | 10000 | 0.4689 | 0.9982 | 0.2088 |
173
+ | 0.2564 | 26.8617 | 10100 | 0.4590 | 0.9984 | 0.2089 |
174
+ | 0.2564 | 27.1277 | 10200 | 0.4986 | 0.9986 | 0.2093 |
175
+ | 0.2564 | 27.3936 | 10300 | 0.4693 | 0.9990 | 0.2100 |
176
+ | 0.2564 | 27.6596 | 10400 | 0.5128 | 0.9982 | 0.2085 |
177
+ | 0.2449 | 27.9255 | 10500 | 0.4512 | 0.9984 | 0.2099 |
178
+ | 0.2449 | 28.1915 | 10600 | 0.4651 | 0.9994 | 0.2091 |
179
+ | 0.2449 | 28.4574 | 10700 | 0.4604 | 0.9984 | 0.2068 |
180
+ | 0.2449 | 28.7234 | 10800 | 0.4687 | 0.9990 | 0.2080 |
181
+ | 0.2449 | 28.9894 | 10900 | 0.4688 | 0.9994 | 0.2064 |
182
+ | 0.2258 | 29.2553 | 11000 | 0.4759 | 0.9994 | 0.2092 |
183
+ | 0.2258 | 29.5213 | 11100 | 0.4816 | 0.9988 | 0.2068 |
184
+ | 0.2258 | 29.7872 | 11200 | 0.4750 | 0.9988 | 0.2053 |
185
+ | 0.2258 | 30.0532 | 11300 | 0.4753 | 0.9986 | 0.2048 |
186
+ | 0.2258 | 30.3191 | 11400 | 0.4829 | 0.9992 | 0.2060 |
187
+ | 0.2124 | 30.5851 | 11500 | 0.4800 | 0.9986 | 0.2081 |
188
+ | 0.2124 | 30.8511 | 11600 | 0.5290 | 0.9990 | 0.2061 |
189
+ | 0.2124 | 31.1170 | 11700 | 0.5369 | 0.9988 | 0.2055 |
190
+ | 0.2124 | 31.3830 | 11800 | 0.5170 | 0.9978 | 0.2041 |
191
+ | 0.2124 | 31.6489 | 11900 | 0.5229 | 0.9990 | 0.2070 |
192
+ | 0.2007 | 31.9149 | 12000 | 0.5035 | 0.9986 | 0.2060 |
193
+ | 0.2007 | 32.1809 | 12100 | 0.5103 | 0.9974 | 0.2049 |
194
+ | 0.2007 | 32.4468 | 12200 | 0.4868 | 0.9972 | 0.2032 |
195
+ | 0.2007 | 32.7128 | 12300 | 0.4867 | 0.9996 | 0.2043 |
196
+ | 0.2007 | 32.9787 | 12400 | 0.5049 | 0.9982 | 0.2040 |
197
+ | 0.1867 | 33.2447 | 12500 | 0.5126 | 0.9984 | 0.2040 |
198
+ | 0.1867 | 33.5106 | 12600 | 0.5321 | 0.9992 | 0.2037 |
199
+ | 0.1867 | 33.7766 | 12700 | 0.5187 | 0.9978 | 0.2040 |
200
+ | 0.1867 | 34.0426 | 12800 | 0.5319 | 0.9990 | 0.2064 |
201
+ | 0.1867 | 34.3085 | 12900 | 0.5275 | 0.9980 | 0.2041 |
202
+ | 0.1749 | 34.5745 | 13000 | 0.5433 | 0.9982 | 0.2043 |
203
+ | 0.1749 | 34.8404 | 13100 | 0.5094 | 0.9984 | 0.2023 |
204
+ | 0.1749 | 35.1064 | 13200 | 0.5363 | 0.9990 | 0.2004 |
205
+ | 0.1749 | 35.3723 | 13300 | 0.5331 | 0.9994 | 0.2022 |
206
+ | 0.1749 | 35.6383 | 13400 | 0.5053 | 0.9990 | 0.2009 |
207
+ | 0.1604 | 35.9043 | 13500 | 0.5157 | 0.9990 | 0.2026 |
208
+ | 0.1604 | 36.1702 | 13600 | 0.5299 | 0.9990 | 0.2018 |
209
+ | 0.1604 | 36.4362 | 13700 | 0.5117 | 0.9996 | 0.2050 |
210
+ | 0.1604 | 36.7021 | 13800 | 0.5067 | 0.9994 | 0.2038 |
211
+ | 0.1604 | 36.9681 | 13900 | 0.4994 | 0.9996 | 0.2028 |
212
+ | 0.1412 | 37.2340 | 14000 | 0.5346 | 0.9984 | 0.2024 |
213
+ | 0.1412 | 37.5 | 14100 | 0.5350 | 0.9994 | 0.2015 |
214
+ | 0.1412 | 37.7660 | 14200 | 0.5237 | 0.9990 | 0.2010 |
215
+ | 0.1412 | 38.0319 | 14300 | 0.5305 | 0.9992 | 0.1993 |
216
+ | 0.1412 | 38.2979 | 14400 | 0.5309 | 0.9986 | 0.1973 |
217
+ | 0.1286 | 38.5638 | 14500 | 0.5270 | 0.9992 | 0.1992 |
218
+ | 0.1286 | 38.8298 | 14600 | 0.5363 | 0.9990 | 0.1999 |
219
+ | 0.1286 | 39.0957 | 14700 | 0.5347 | 0.9990 | 0.1999 |
220
+ | 0.1286 | 39.3617 | 14800 | 0.5319 | 0.9990 | 0.1999 |
221
+ | 0.1286 | 39.6277 | 14900 | 0.5322 | 0.9994 | 0.1995 |
222
+ | 0.1217 | 39.8936 | 15000 | 0.5322 | 0.9992 | 0.1992 |
223
+
224
+
225
+ ### Framework versions
226
+
227
+ - Transformers 4.47.0.dev0
228
+ - Pytorch 2.5.1+cu124
229
+ - Datasets 3.1.0
230
+ - Tokenizers 0.20.3