|
import numpy as np |
|
import pandas as pd |
|
from classifier import DebertaV2ForSequenceClassification |
|
from datasets import Dataset |
|
from scipy.stats import pearsonr |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score |
|
from transformers import (AutoTokenizer, DataCollatorWithPadding, Trainer, |
|
TrainingArguments) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/mdeberta-v3-base") |
|
|
|
def sigmoid(x): |
|
return 1 / (1 + np.exp(-x)) |
|
|
|
def compute_metrics(eval_pred): |
|
predictions, labels = eval_pred |
|
scores, binary_logits = predictions |
|
scores = scores.squeeze() |
|
probs = sigmoid(binary_logits.squeeze()) |
|
predicted_labels = (probs >= 0.5).astype(int) |
|
binary_labels = (labels >= 3).astype(int) |
|
return { |
|
'pearson': pearsonr(scores, labels)[0], |
|
'accuracy': accuracy_score(binary_labels, predicted_labels), |
|
'precision': precision_score(binary_labels, predicted_labels), |
|
'recall': recall_score(binary_labels, predicted_labels), |
|
} |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], truncation=True, max_length=512) |
|
|
|
def train_classifier(): |
|
train_csv = pd.read_csv(PATH_TO_TRAINSET) |
|
train_dataset = Dataset.from_pandas(train_csv) |
|
|
|
test_csv = pd.read_csv(PATH_TO_TESTSET).sample(n=10_000, random_state=42) |
|
test_dataset = Dataset.from_pandas(test_csv) |
|
|
|
train_dataset = train_dataset.map(tokenize_function, batched=True) |
|
test_dataset = test_dataset.map(tokenize_function, batched=True) |
|
train_dataset = train_dataset.with_format("torch") |
|
test_dataset = test_dataset.with_format("torch") |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
) |
|
model = DebertaV2ForSequenceClassification.from_pretrained("microsoft/mdeberta-v3-base") |
|
print ("Freezing model embeddings!") |
|
model.freeze_embeddings() |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=test_dataset, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics |
|
) |
|
trainer.train() |
|
|
|
trainer.evaluate() |
|
|
|
|
|
if __name__ == "__main__": |
|
train_classifier() |
|
|