From 4394a62004260c3b9d781488e85f959a70910af1 Mon Sep 17 00:00:00 2001 Date: Sat, 8 Apr 2023 15:11:43 +1000 Subject: [PATCH] add DPMPP 2M V2 --- modules/sd_samplers_kdiffusion.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 93f0e55a..9202f4d4 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -27,12 +27,12 @@ samplers_k_diffusion = [ ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), + ('DPM++ 2M v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m'], {}), + ('DPM++ 2M Karras v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), ] -- --- k_diffusion/sampling.py | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/repositories/k-diffusion/k_diffusion/sampling.py b/repositories/k-diffusion/k_diffusion/sampling.py index f050f88..1b0b282 100644 --- a/repositories/k-diffusion/k_diffusion/sampling.py +++ b/repositories/k-diffusion/k_diffusion/sampling.py @@ -605,4 +605,39 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d old_denoised = denoised return x + + +@torch.no_grad() +def sample_dpmpp_2m_v2(model, x, sigmas, extra_args=None, callback=None, disable=None): + """DPM-Solver++(2M)V2.""" + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + sigma_fn = lambda t: t.neg().exp() + t_fn = lambda sigma: sigma.log().neg() + old_denoised = None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) + h = t_next - t + + t_min = min(sigma_fn(t_next), sigma_fn(t)) + t_max = max(sigma_fn(t_next), sigma_fn(t)) + + if old_denoised is None or sigmas[i + 1] == 0: + x = (t_min / t_max) * x - (-h).expm1() * denoised + else: + h_last = t - t_fn(sigmas[i - 1]) + + h_min = min(h_last, h) + h_max = max(h_last, h) + r = h_max / h_min + + h_d = (h_max + h_min) / 2 + denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised + x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d + + old_denoised = denoised + return x -- 2.34.1