KenyaNonaka0210 commited on
Commit
28698b8
·
1 Parent(s): 71d8ac2
config.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
- "_name_or_path": "luxe_ub_sample_private",
3
  "architectures": [
4
- "LuxeForMaskedLM"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "auto_map": {
8
- "AutoConfig": "uzabase/UBKE-LUKE--configuration_luxe.LuxeConfig",
9
- "AutoModel": "uzabase/UBKE-LUKE--modeling_luxe.LuxeForMaskedLM",
10
- "AutoModelForPreTraining": "uzabase/UBKE-LUKE--modeling_luxe.LuxeForMaskedLM"
11
  },
12
  "bert_model_name": "cl-tohoku/bert-base-japanese-v3",
13
  "bos_token_id": null,
@@ -25,7 +25,7 @@
25
  "intermediate_size": 3072,
26
  "layer_norm_eps": 1e-12,
27
  "max_position_embeddings": 512,
28
- "model_type": "luxe",
29
  "normalize_entity_embeddings": 1,
30
  "num_attention_heads": 12,
31
  "num_category_entities": 0,
 
1
  {
2
+ "_name_or_path": "ubke_ub_sample_private",
3
  "architectures": [
4
+ "UbkeForMaskedLM"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "auto_map": {
8
+ "AutoConfig": "uzabase/UBKE-LUKE--configuration_ubke.UbkeConfig",
9
+ "AutoModel": "uzabase/UBKE-LUKE--modeling_ubke.UbkeForMaskedLM",
10
+ "AutoModelForPreTraining": "uzabase/UBKE-LUKE--modeling_ubke.UbkeForMaskedLM"
11
  },
12
  "bert_model_name": "cl-tohoku/bert-base-japanese-v3",
13
  "bos_token_id": null,
 
25
  "intermediate_size": 3072,
26
  "layer_norm_eps": 1e-12,
27
  "max_position_embeddings": 512,
28
+ "model_type": "ubke",
29
  "normalize_entity_embeddings": 1,
30
  "num_attention_heads": 12,
31
  "num_category_entities": 0,
configuration_luxe.py → configuration_ubke.py RENAMED
@@ -1,8 +1,8 @@
1
  from transformers.configuration_utils import PretrainedConfig
2
 
3
 
4
- class LuxeConfig(PretrainedConfig):
5
- model_type = "luxe"
6
 
7
  def __init__(
8
  self,
@@ -30,7 +30,12 @@ class LuxeConfig(PretrainedConfig):
30
  eos_token_id=2,
31
  **kwargs,
32
  ):
33
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
 
 
 
 
 
34
 
35
  self.vocab_size = vocab_size
36
  self.entity_vocab_size = entity_vocab_size
 
1
  from transformers.configuration_utils import PretrainedConfig
2
 
3
 
4
+ class UbkeConfig(PretrainedConfig):
5
+ model_type = "ubke"
6
 
7
  def __init__(
8
  self,
 
30
  eos_token_id=2,
31
  **kwargs,
32
  ):
33
+ super().__init__(
34
+ pad_token_id=pad_token_id,
35
+ bos_token_id=bos_token_id,
36
+ eos_token_id=eos_token_id,
37
+ **kwargs,
38
+ )
39
 
40
  self.vocab_size = vocab_size
41
  self.entity_vocab_size = entity_vocab_size
modeling_luxe.py → modeling_ubke.py RENAMED
@@ -11,11 +11,11 @@ from transformers.models.luke.modeling_luke import (
11
  )
12
  from transformers.utils import ModelOutput
13
 
14
- from .configuration_luxe import LuxeConfig
15
 
16
 
17
  @dataclass
18
- class LuxeMaskedLMOutput(ModelOutput):
19
  loss: Optional[torch.FloatTensor] = None
20
  mlm_loss: Optional[torch.FloatTensor] = None
21
  mep_loss: Optional[torch.FloatTensor] = None
@@ -32,8 +32,8 @@ class LuxeMaskedLMOutput(ModelOutput):
32
  attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
33
 
34
 
35
- class LuxePreTrainedModel(PreTrainedModel):
36
- config_class = LuxeConfig
37
  base_model_prefix = "luke"
38
  supports_gradient_checkpointing = True
39
  _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
@@ -55,14 +55,14 @@ class LuxePreTrainedModel(PreTrainedModel):
55
  module.weight.data.fill_(1.0)
56
 
57
 
58
- class LuxeForMaskedLM(LuxePreTrainedModel):
59
  _tied_weights_keys = [
60
  "lm_head.decoder.weight",
61
  "lm_head.decoder.bias",
62
  "entity_predictions.decoder.weight",
63
  ]
64
 
65
- def __init__(self, config: LuxeConfig):
66
  super().__init__(config)
67
 
68
  self.luke = LukeModel(config)
@@ -114,7 +114,7 @@ class LuxeForMaskedLM(LuxePreTrainedModel):
114
  output_attentions: Optional[bool] = None,
115
  output_hidden_states: Optional[bool] = None,
116
  return_dict: Optional[bool] = None,
117
- ) -> Union[Tuple, LuxeMaskedLMOutput]:
118
  return_dict = (
119
  return_dict if return_dict is not None else self.config.use_return_dict
120
  )
@@ -232,7 +232,7 @@ class LuxeForMaskedLM(LuxePreTrainedModel):
232
  if v is not None
233
  )
234
 
235
- return LuxeMaskedLMOutput(
236
  loss=loss,
237
  mlm_loss=mlm_loss,
238
  mep_loss=mep_loss,
 
11
  )
12
  from transformers.utils import ModelOutput
13
 
14
+ from .configuration_ubke import UbkeConfig
15
 
16
 
17
  @dataclass
18
+ class UbkeMaskedLMOutput(ModelOutput):
19
  loss: Optional[torch.FloatTensor] = None
20
  mlm_loss: Optional[torch.FloatTensor] = None
21
  mep_loss: Optional[torch.FloatTensor] = None
 
32
  attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
33
 
34
 
35
+ class UbkePreTrainedModel(PreTrainedModel):
36
+ config_class = UbkeConfig
37
  base_model_prefix = "luke"
38
  supports_gradient_checkpointing = True
39
  _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
 
55
  module.weight.data.fill_(1.0)
56
 
57
 
58
+ class UbkeForMaskedLM(UbkePreTrainedModel):
59
  _tied_weights_keys = [
60
  "lm_head.decoder.weight",
61
  "lm_head.decoder.bias",
62
  "entity_predictions.decoder.weight",
63
  ]
64
 
65
+ def __init__(self, config: UbkeConfig):
66
  super().__init__(config)
67
 
68
  self.luke = LukeModel(config)
 
114
  output_attentions: Optional[bool] = None,
115
  output_hidden_states: Optional[bool] = None,
116
  return_dict: Optional[bool] = None,
117
+ ) -> Union[Tuple, UbkeMaskedLMOutput]:
118
  return_dict = (
119
  return_dict if return_dict is not None else self.config.use_return_dict
120
  )
 
232
  if v is not None
233
  )
234
 
235
+ return UbkeMaskedLMOutput(
236
  loss=loss,
237
  mlm_loss=mlm_loss,
238
  mep_loss=mep_loss,