File size: 23,024 Bytes
3bfff56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from tokenization_qwen import QWenTokenizer\n",
"from tokenization_qwen_sub import QWenTokenizer as QWenTokenizer_SUB\n",
"\n",
"tokenizer = QWenTokenizer(vocab_file=\"./qwen.tiktoken\")\n",
"tokenizer_sub = QWenTokenizer_SUB(vocab_file=\"./modified_qwen_sub.tiktoken\")\n",
"# tokenizer = QWenTokenizer(vocab_file=\"./modified_qwen.tiktoken\")\n",
"# tokenizer = QWenTokenizer(vocab_file=\"./modified_qwen_sub.tiktoken\")\n",
"\n",
"# print(tokenizer.tokenizer.encode(\"Hello World\", allowed_special=set(\"<|extra_40|>\")))\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"151860\n",
"151860\n"
]
}
],
"source": [
"print(len(tokenizer))\n",
"print(len(tokenizer_sub))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"layout_generation_exmaple = \"\"\"<text><loc_72><loc_55><loc_372><loc_20><text><loc_100><loc_118><loc_789><loc_42><text><loc_100><loc_167><loc_788><loc_56><text><loc_100><loc_229><loc_783><loc_56><text><loc_100><loc_292><loc_733><loc_42><text><loc_100><loc_341><loc_757><loc_29><text><loc_100><loc_500><loc_798><loc_42><text><loc_100><loc_587><loc_523><loc_15><text><loc_100><loc_705><loc_809><loc_56><text><loc_100><loc_768><loc_702><loc_29><text><loc_100><loc_803><loc_809><loc_56><text><loc_947><loc_987><loc_24><loc_17><title><loc_100><loc_563><loc_709><loc_19><table><loc_97><loc_370><loc_817><loc_115><table><loc_99><loc_607><loc_809><loc_86>\"\"\"\n",
"# layout_generation_exmaple = \"<|extra_40|>\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[151649, 27, 1074, 62, 22, 17, 1784, 1074, 62, 20, 20, 1784, 1074, 62, 18, 22, 17, 1784, 1074, 62, 17, 15, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 16, 16, 23, 1784, 1074, 62, 22, 23, 24, 1784, 1074, 62, 19, 17, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 16, 21, 22, 1784, 1074, 62, 22, 23, 23, 1784, 1074, 62, 20, 21, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 17, 17, 24, 1784, 1074, 62, 22, 23, 18, 1784, 1074, 62, 20, 21, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 17, 24, 17, 1784, 1074, 62, 22, 18, 18, 1784, 1074, 62, 19, 17, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 18, 19, 16, 1784, 1074, 62, 22, 20, 22, 1784, 1074, 62, 17, 24, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 20, 15, 15, 1784, 1074, 62, 22, 24, 23, 1784, 1074, 62, 19, 17, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 20, 23, 22, 1784, 1074, 62, 20, 17, 18, 1784, 1074, 62, 16, 20, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 22, 15, 20, 1784, 1074, 62, 23, 15, 24, 1784, 1074, 62, 20, 21, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 22, 21, 23, 1784, 1074, 62, 22, 15, 17, 1784, 1074, 62, 17, 24, 29, 151649, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 23, 15, 18, 1784, 1074, 62, 23, 15, 24, 1784, 1074, 62, 20, 21, 29, 151649, 27, 1074, 62, 24, 19, 22, 1784, 1074, 62, 24, 23, 22, 1784, 1074, 62, 17, 19, 1784, 1074, 62, 16, 22, 29, 151651, 27, 1074, 62, 16, 15, 15, 1784, 1074, 62, 20, 21, 18, 1784, 1074, 62, 22, 15, 24, 1784, 1074, 62, 16, 24, 29, 151652, 27, 1074, 62, 24, 22, 1784, 1074, 62, 18, 22, 15, 1784, 1074, 62, 23, 16, 22, 1784, 1074, 62, 16, 16, 20, 29, 151652, 27, 1074, 62, 24, 24, 1784, 1074, 62, 21, 15, 22, 1784, 1074, 62, 23, 15, 24, 1784, 1074, 62, 23, 21, 29]\n",
"[151649, 150715, 150698, 151015, 150663, 151649, 150743, 150761, 151432, 150685, 151649, 150743, 150810, 151431, 150699, 151649, 150743, 150872, 151426, 150699, 151649, 150743, 150935, 151376, 150685, 151649, 150743, 150984, 151400, 150672, 151649, 150743, 151143, 151441, 150685, 151649, 150743, 151230, 151166, 150658, 151649, 150743, 151348, 151452, 150699, 151649, 150743, 151411, 151345, 150672, 151649, 150743, 151446, 151452, 150699, 151649, 151590, 151630, 150667, 150660, 151651, 150743, 151206, 151352, 150662, 151652, 150740, 151013, 151460, 150758, 151652, 150742, 151250, 151452, 150729]\n"
]
}
],
"source": [
"tokens = tokenizer.tokenizer.encode(str(layout_generation_exmaple), allowed_special=\"all\")\n",
"print(tokens)\n",
"tokens_sub = tokenizer_sub.tokenizer.encode(str(layout_generation_exmaple), allowed_special=\"all\")\n",
"print(tokens_sub)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# decoded = tokenizer.tokenizer.decode(tokens)\n",
"# new_decoded = tokenizer.tokenizer.decode(new_tokens)\n",
"# print(decoded)\n",
"# print(new_decoded)\n",
"for i in tokens:\n",
" decoded_token = tokenizer.tokenizer.decode([i])\n",
" print(f\"{i},{decoded_token}\\n\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(len(tokenizer))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# map the token id to the token\n",
"for i in tokens:\n",
" decoded_token = tokenizer.tokenizer.decode([i])\n",
" print(f\"{i},{decoded_token}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"\n",
"tokenizer = tiktoken.model.load_tiktoken_bpe(\"./qwen.tiktoken\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"import os\n",
"\n",
"def modify_tiktoken_file(input_file, output_file):\n",
" # Read the file contents directly\n",
" with open(input_file, 'rb') as f:\n",
" original_content = f.readlines()\n",
" \n",
" # Generate the new location unique tokens\n",
" LOCATION_UNIQUE_TOKENS = tuple(f\"<loc_{i}>\" for i in range(1, 1001))\n",
" \n",
" # Prepare the new content\n",
" new_content = []\n",
" \n",
" # Keep the version header if it exists\n",
" if original_content and original_content[0].startswith(b'version:'):\n",
" new_content.append(original_content[0])\n",
" original_content = original_content[1:]\n",
" \n",
" # Keep all existing tokens except the last 1000\n",
" existing_tokens = original_content[:-1000] if len(original_content) > 1000 else []\n",
" new_content.extend(existing_tokens)\n",
" \n",
" # Add the new location tokens\n",
" for token in LOCATION_UNIQUE_TOKENS:\n",
" # Encode the token and create a rank (you might want to adjust the rank strategy)\n",
" encoded_token = token.encode('utf-8')\n",
" # Use a high rank to ensure these are at the end\n",
" new_content.append(encoded_token + b' ' + str(len(existing_tokens) + LOCATION_UNIQUE_TOKENS.index(token)).encode('utf-8') + b'\\n')\n",
" \n",
" # Save the modified tokenizer\n",
" with open(output_file, 'wb') as f:\n",
" f.writelines(new_content)\n",
" \n",
" print(f\"Modified tokenizer saved to {output_file}\")\n",
" print(f\"Total tokens in new file: {len(new_content)}\")\n",
"\n",
"# Example usage\n",
"input_tiktoken_file = './qwen.tiktoken'\n",
"output_tiktoken_file = './modified_qwen.tiktoken'\n",
"\n",
"modify_tiktoken_file(input_tiktoken_file, output_tiktoken_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"from typing import Dict\n",
"\n",
"def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:\n",
" with open(tiktoken_bpe_file, \"rb\") as f:\n",
" contents = f.read()\n",
" return {\n",
" base64.b64decode(token): int(rank)\n",
" for token, rank in (line.split() for line in contents.splitlines() if line)\n",
" }\n",
"\n",
"# Path to your .tiktoken file\n",
"tiktoken_bpe_file = \"./qwen.tiktoken\"\n",
"\n",
"# Load the BPE encoding\n",
"bpe_data = _load_tiktoken_bpe(tiktoken_bpe_file)\n",
"\n",
"# Example usage\n",
"# print(\"Loaded BPE Data:\", bpe_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open(\"./qwen.tiktoken\", 'rb') as f:\n",
" contents = f.read()\n",
"\n",
"# Parse the original vocabulary\n",
"vocab = {\n",
" base64.b64decode(token): int(rank)\n",
" for token, rank in (line.split() for line in contents.splitlines() if line)\n",
"}\n",
"\n",
"base_vocab_size = len(vocab)\n",
"print(base_vocab_size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"location_tokens = [f\"<loc_{i}>\" for i in range(1, 1001)]\n",
"print(location_tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokens_to_remove = sorted(vocab.items(), key=lambda x: x[1])[-1000:]\n",
"print(tokens_to_remove)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"import tiktoken\n",
"\n",
"def modify_tokenizer(input_file='./qwen.tiktoken', output_file='./modified_qwen.tiktoken'):\n",
" # Read the original tokenizer file\n",
" with open(input_file, 'rb') as f:\n",
" contents = f.read()\n",
" \n",
" # Parse the original vocabulary\n",
" vocab = {\n",
" base64.b64decode(token): int(rank)\n",
" for token, rank in (line.split() for line in contents.splitlines() if line)\n",
" }\n",
" \n",
" # Get the base vocabulary size (excluding special tokens)\n",
" base_vocab_size = len(vocab)\n",
" \n",
" # Create location tokens\n",
" location_tokens = [f\"<loc_{i}>\" for i in range(1, 1001)]\n",
" \n",
" # Remove the last 1000 tokens from the vocabulary\n",
" tokens_to_remove = sorted(vocab.items(), key=lambda x: x[1])[-1000:]\n",
" for token, _ in tokens_to_remove:\n",
" del vocab[token]\n",
" \n",
" # Add location tokens\n",
" for i, token in enumerate(location_tokens):\n",
" vocab[token.encode('utf-8')] = base_vocab_size - 1000 + i\n",
" \n",
" # Write the modified vocabulary to the new file\n",
" with open(output_file, 'w', encoding='utf-8') as f:\n",
" for token, rank in sorted(vocab.items(), key=lambda x: x[1]):\n",
" # Encode the token in base64\n",
" token_b64 = base64.b64encode(token).decode('utf-8')\n",
" f.write(f\"{token_b64} {rank}\\n\")\n",
" \n",
" print(f\"Modified tokenizer saved to {output_file}\")\n",
" print(f\"Added {len(location_tokens)} location tokens\")\n",
" print(f\"Final vocabulary size: {len(vocab)}\")\n",
"\n",
"\n",
"modify_tokenizer()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"import tiktoken\n",
"from typing import Dict\n",
"from tabulate import tabulate\n",
"\n",
"# Define special tokens from the original tokenizer\n",
"ENDOFTEXT = \"<|endoftext|>\"\n",
"IMSTART = \"<|im_start|>\"\n",
"IMEND = \"<|im_end|>\"\n",
"DOCUMENT_UNIQUE_TOKENS = tuple([\"<caption>\", \"<formula>\", \"<list>\", \"<text>\", \"<image>\", \"<title>\", \"<table>\", \"<LD>\", \"<TE>\", \"<MF>\", \"<IC>\", \"<OCR>\", \"<POCR>\", \"<VQA>\", \"<DVQA>\"])\n",
"LOCATION_UNIQUE_TOKENS = tuple([f\"<loc_{i}>\" for i in range(0, 1001)])\n",
"EXTRAS = tuple((f\"<|extra_{i}|>\" for i in range(len(DOCUMENT_UNIQUE_TOKENS), 205)))\n",
"\n",
"# Include location tokens in special tokens\n",
"SPECIAL_TOKENS = (ENDOFTEXT, IMSTART, IMEND) + DOCUMENT_UNIQUE_TOKENS + EXTRAS + LOCATION_UNIQUE_TOKENS\n",
"\n",
"def load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:\n",
" with open(tiktoken_bpe_file, \"rb\") as f:\n",
" contents = f.read()\n",
" return {\n",
" base64.b64decode(token): int(rank)\n",
" for token, rank in (line.split() for line in contents.splitlines() if line)\n",
" }\n",
"\n",
"def decode_token(token_bytes):\n",
" \"\"\"Attempt to decode bytes to string, fallback to base64 if not UTF-8 decodable\"\"\"\n",
" try:\n",
" return token_bytes.decode('utf-8')\n",
" except UnicodeDecodeError:\n",
" return f\"<bytes>{base64.b64encode(token_bytes).decode('utf-8')}\"\n",
"\n",
"def compare_tokenizers(old_file='./qwen.tiktoken', new_file='./modified_qwen.tiktoken'):\n",
" # Load both tokenizers\n",
" old_vocab = load_tiktoken_bpe(old_file)\n",
" new_vocab = load_tiktoken_bpe(new_file)\n",
" \n",
" # Create special tokens dictionary including location tokens\n",
" special_tokens = {\n",
" token: index\n",
" for index, token in enumerate(SPECIAL_TOKENS, start=len(new_vocab))\n",
" }\n",
" \n",
" # Add location tokens to the special tokens dictionary with their proper ranks\n",
" for i, token in enumerate(LOCATION_UNIQUE_TOKENS):\n",
" special_tokens[token] = len(new_vocab) - 1000 + i\n",
" \n",
" print(f\"Old vocabulary size: {len(old_vocab)}\")\n",
" print(f\"New vocabulary size: {len(new_vocab)}\")\n",
" print(f\"Difference in size: {len(new_vocab) - len(old_vocab)}\")\n",
" print(f\"Number of special tokens: {len(special_tokens)}\")\n",
" print(\"\\n\")\n",
" \n",
" # Find tokens that were removed\n",
" removed_tokens = set(old_vocab.keys()) - set(new_vocab.keys())\n",
" print(f\"Number of removed tokens: {len(removed_tokens)}\")\n",
" \n",
" # Find new tokens that were added\n",
" added_tokens = set(new_vocab.keys()) - set(old_vocab.keys())\n",
" print(f\"Number of added tokens: {len(added_tokens)}\")\n",
" print(\"\\n\")\n",
" \n",
" # Create comparison tables\n",
" print(\"Sample of removed tokens (last 10):\")\n",
" removed_data = []\n",
" for token in sorted(removed_tokens, key=lambda x: old_vocab[x])[-10:]:\n",
" removed_data.append([\n",
" decode_token(token),\n",
" old_vocab[token]\n",
" ])\n",
" print(tabulate(removed_data, headers=['Token', 'Rank'], tablefmt='grid'))\n",
" print(\"\\n\")\n",
" \n",
" print(\"Sample of added tokens (first 10):\")\n",
" added_data = []\n",
" for token in sorted(added_tokens, key=lambda x: new_vocab[x])[:10]:\n",
" added_data.append([\n",
" decode_token(token),\n",
" new_vocab[token]\n",
" ])\n",
" print(tabulate(added_data, headers=['Token', 'Rank'], tablefmt='grid'))\n",
" \n",
" # Test tokenization of a sample text\n",
" print(\"\\nTokenization comparison for sample text:\")\n",
" # sample_text = \"This is a test sentence with location markers <loc_1> and <loc_999>\"\n",
" sample_text = layout_generation_exmaple\n",
" \n",
" # Create encodings for both tokenizers\n",
" old_enc = tiktoken.Encoding(\n",
" \"old_qwen\",\n",
" pat_str=r\"\"\"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+\"\"\",\n",
" mergeable_ranks=old_vocab,\n",
" special_tokens=special_tokens\n",
" )\n",
" \n",
" new_enc = tiktoken.Encoding(\n",
" \"new_qwen\",\n",
" pat_str=r\"\"\"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+\"\"\",\n",
" mergeable_ranks=new_vocab,\n",
" special_tokens=special_tokens\n",
" )\n",
" \n",
" try:\n",
" old_tokens = old_enc.encode(sample_text , allowed_special=\"all\")\n",
" print(\"\\nOld tokenizer:\")\n",
" print(f\"Token IDs: {old_tokens}\")\n",
" print(f\"Decoded: {old_enc.decode(old_tokens)}\")\n",
" except Exception as e:\n",
" print(\"\\nError with old tokenizer:\", str(e))\n",
" \n",
" try:\n",
" new_tokens = new_enc.encode(sample_text , allowed_special=\"all\")\n",
" print(\"\\nNew tokenizer:\")\n",
" print(f\"Token IDs: {new_tokens}\")\n",
" print(f\"Decoded: {new_enc.decode(new_tokens)}\")\n",
" except Exception as e:\n",
" print(\"\\nError with new tokenizer:\", str(e))\n",
"\n",
"# if __name__ == \"__main__\":\n",
"compare_tokenizers()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original vocab size: 151643\n",
"Truncated vocab size: 150643\n",
"Modified tokenizer saved to ./modified_qwen_sub.tiktoken\n",
"Added 1000 location tokens\n"
]
}
],
"source": [
"import base64\n",
"\n",
"def modify_qwen_tokenizer_small(input_file='./qwen.tiktoken', output_file='./modified_qwen_sub.tiktoken'):\n",
" # Read the original tokenizer file\n",
" with open(input_file, 'rb') as f:\n",
" contents = f.read()\n",
" \n",
" # Parse the original vocabulary\n",
" vocab = {\n",
" base64.b64decode(token): int(rank)\n",
" for token, rank in (line.split() for line in contents.splitlines() if line)\n",
" }\n",
" \n",
" # Sort tokens by rank and remove last 1001 tokens\n",
" sorted_tokens = sorted(vocab.items(), key=lambda x: x[1])\n",
" truncated_vocab = dict(sorted_tokens[:-1000])\n",
" base_vocab_size = len(truncated_vocab)\n",
" \n",
" print(f\"Original vocab size: {len(vocab)}\")\n",
" print(f\"Truncated vocab size: {len(truncated_vocab)}\")\n",
" \n",
" # Write the modified vocabulary with location tokens first\n",
" with open(output_file, 'w', encoding='utf-8') as f:\n",
" # First write the truncated base vocabulary\n",
" for token, rank in sorted(truncated_vocab.items(), key=lambda x: x[1]):\n",
" token_b64 = base64.b64encode(token).decode('utf-8')\n",
" f.write(f\"{token_b64} {rank}\\n\")\n",
" \n",
" print(f\"Modified tokenizer saved to {output_file}\")\n",
" print(f\"Added {1000} location tokens\")\n",
"\n",
"# if __name__ == \"__main__\":\n",
"modify_qwen_tokenizer_small()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Comparison saved to tokenizer_comparison.txt\n",
"\n",
"Statistics:\n",
"Old tokenizer size: 151860\n",
"New tokenizer size: 151860\n",
"\n",
"Sample of differences:\n",
"Token 150643: 'β' -> '<loc_0>'\n",
"Token 150644: 'β' -> '<loc_1>'\n",
"Token 150645: 'β' -> '<loc_2>'\n",
"Token 150646: 'β' -> '<loc_3>'\n",
"Token 150647: 'βΎ' -> '<loc_4>'\n",
"Token 150648: 'β' -> '<loc_5>'\n",
"Token 150649: 'β' -> '<loc_6>'\n",
"Token 150650: 'β' -> '<loc_7>'\n",
"Token 150651: 'β' -> '<loc_8>'\n",
"Token 150652: 'β' -> '<loc_9>'\n"
]
}
],
"source": [
"from tokenization_qwen import QWenTokenizer\n",
"from tabulate import tabulate\n",
"\n",
"def compare_tokenizers(old_file=\"./qwen.tiktoken\", new_file=\"./modified_qwen_sub.tiktoken\", output_file=\"tokenizer_comparison.txt\"):\n",
" # Initialize both tokenizers\n",
" old_tokenizer = QWenTokenizer(vocab_file=old_file)\n",
" new_tokenizer = QWenTokenizer_SUB(vocab_file=new_file)\n",
" \n",
" # Get vocabulary size\n",
" vocab_size = max(len(old_tokenizer), len(new_tokenizer))\n",
" \n",
" # Prepare comparison data\n",
" comparison_data = []\n",
" for token_id in range(vocab_size):\n",
" try:\n",
" old_token = old_tokenizer.tokenizer.decode([token_id])\n",
" except:\n",
" old_token = \"N/A\"\n",
" \n",
" try:\n",
" new_token = new_tokenizer.tokenizer.decode([token_id])\n",
" except:\n",
" new_token = \"N/A\"\n",
" \n",
" comparison_data.append([token_id, old_token, new_token])\n",
" \n",
" # just write the data to a file\n",
" with open(output_file, 'w', encoding='utf-8') as f:\n",
" for row in comparison_data:\n",
" f.write(f\"{row[0]},{row[1]},{row[2]}\\n\")\n",
" \n",
"\n",
" print(f\"Comparison saved to {output_file}\")\n",
" \n",
" # Print some statistics\n",
" print(f\"\\nStatistics:\")\n",
" print(f\"Old tokenizer size: {len(old_tokenizer)}\")\n",
" print(f\"New tokenizer size: {len(new_tokenizer)}\")\n",
" \n",
" # Print sample of differences\n",
" print(\"\\nSample of differences:\")\n",
" differences = [(i, old, new) for i, old, new in comparison_data if old != new]\n",
" for i, (token_id, old, new) in enumerate(differences[:10]):\n",
" print(f\"Token {token_id}: '{old}' -> '{new}'\")\n",
"\n",
"# Run the comparison\n",
"compare_tokenizers()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|