File size: 10,984 Bytes
5105037 e0a9f7f 1dbf76a 5105037 d0dbb8c d3ee363 e0a9f7f d0dbb8c 851e5d2 1dbf76a e0a9f7f 1dbf76a e0a9f7f d240956 851e5d2 e0a9f7f 1dbf76a 851e5d2 e0a9f7f 1dbf76a d0dbb8c aafb486 c80e4d9 cdf6b54 c80e4d9 d0dbb8c c80e4d9 49cf99f d0dbb8c c80e4d9 aafb486 cdf6b54 aafb486 cdf6b54 aafb486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
library_name: transformers
tags:
- trl
- sft
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
---
-----------------------------------------------------------------------------------------------------
**Remeber this model is for illustration and knowlwdge Purpose. I have only used online freely available materials in whole process.**
## Model Details
This Model is Trained on Custum data related to Sales interactive conversations as Array of objects having Instruction and Response as Keys.
-**Parameters:** ~8 Billion
-**Quantization:** 4 Bit (Q-LORA)
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
- **Trained by:** [vakodiya] [Viru Akodiya]
- **Model type:** [Text-Generation]
- **License:** [apache-2.0]
- **Finetuned from model:** [meta-llama/Llama-3.1-8B-Instruct]
### Training Data
Training Data is specifically generated by me to train to my use case.
It consits of Just 500 examples, so to increase dataset size, duplicated the original data and makes it 1000.
#### Training Hyperparameters
- **Hardware Type:** [Kaggle's GPU T4X2]
- **Time used:** [37 Minutes]
- **Cloud Provider:** [Kaggle]
-----------------------------------------------------------------------------------------------------------
## INFERENCE (It will need GPU)
------------------------------------------------------------------------------------------------------------
# Install Dependencies
```
%%capture
!pip install transformers accelerate bitsandbytes
```
```
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline, AutoConfig
import torch
```
---------------------------------------------------------------------------------------------------------
# Load model and Tokenizer
```
model_name = "vakodiya/Llama-3-8B-instruct-4bit-salesbot"
config = AutoConfig.from_pretrained(model_name)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
)
# Model evaluation mode
model.eval()
```
-------------------------------------------------------------------------------------------------------
# Creating Inference Point
```
def Trained_Llama3_1_inference(prompt):
model.eval()
conversation=[
{"role": "user", "content": prompt},
]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt", padding=True, truncation=True, return_attention_mask=True)
if input_ids.shape[1] > 8192:
input_ids = input_ids[:, -8192:]
return "Input tokens more than 8k"
inputs = input_ids.to(model.device)
attention_mask = torch.ones_like(inputs, dtype=torch.long)
final_prompt=tokenizer.decode(inputs[0])
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.4,attention_mask=attention_mask,pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0])
final_response= response.replace(final_prompt,"").replace('<|eot_id|>',"") # Exclude prompt from response
return final_response
```
-------------------------------------------------------------------------------------------------------------------------------
# Invoking Inference
```
Trained_Llama3_1_inference("What are qualities of good Sales-person ?")
```
----------End of Inferece --------------------
----------------------------------------------------------------------------------------------------------------------------------
---------- Start of Training -----------------
#### Training (on Kaggle Notebook)
This training is done on Kaggle Notebook enabling GPU(Required in quantized training/ inference).
# Install Dependencies
```
%%capture
!pip install -U transformers[torch] datasets
!pip install -q bitsandbytes trl peft accelerate
!pip install flash-attn --no-build-isolation
!pip install huggingface_hub
```
------------------------------------------------------------------------------------------------------------------------------------------
# Import Modules
```
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from trl import SFTTrainer
from peft import LoraConfig
from huggingface_hub import notebook_login
import torch
from huggingface_hub import login
from datasets import Dataset
from kaggle_secrets import UserSecretsClient
import os
```
------------------------------------------------------------------------------------------------------------------------------------------
# Remember to generate a Token with edit access on HuggingFace and add it as secret in Kaggle Notebook
```
hf_token = UserSecretsClient().get_secret("HF_TOKEN_LLAMA3")
login(token = hf_token)
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use only GPU 0
```
-------------------------------------------------------------------------------------------------------------------------------------------
# Remember to Customize your own data with at least 1000 examples.
```
Data_examples = [{"instruction":"Who has taken oath as Prime minister of India in 2024", "response":" Shri Narendra Modi has taken oath as Prime minister of india on 9th June 2024. He is now become prime minister having 3 consecutive terms."},
...................................................................................,]
```
------------------------------------------------------------------------------------------------------------------------------------------
# Process data to stringify only the `text` field
```
processed_data = []
for example in Data_examples :
processed_data.append({'text':f"{example['instruction']} \n {example['response']}"})
# Create a Dataset from the list of dictionaries
dataset = Dataset.from_list(processed_data)
# Split into train and test Data sets
dataset = dataset.train_test_split(test_size=0.01)
# Access train and test splits
train_dataset = dataset['train']
test_dataset = dataset['test']
```
---------------------------------------------------------------------------------------------------------------------------------------
# Firstly add model to Kaggle notebook navigating to Add Input and Add LLama3.1 8 B in out Notebook
```
model_path="/kaggle/input/llama-3.1/transformers/8b-instruct/2" # Change it according to your model path in Notebook
trained_model_name = "Llama-3-8B-instruct-4bit-finetuned"
output_dir = 'kaggle/working/' + trained_model_name
```
----------------------------------------------------------------------------------------------------------------------------------------
## For 4 bit quantization (Q-LoRA) set Configs
```
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,)
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
```
-----------------------------------------------------------------------------------------------------------------------------------------
# Load the Model and Tokenizer and set pad token
```
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
quantization_config=quantization_config,
device_map="auto")
# Use eos_token as pad_token
tokenizer.pad_token = tokenizer.eos_token
```
-----------------------------------------------------------------------------------------------------------------------------------------
# Set Training configurations
```
training_args = TrainingArguments(
fp16=False, # specify bf16=True instead when training on GPUs that support bf16 else fp16
bf16=True,
do_eval=True,
eval_strategy="epoch",
gradient_accumulation_steps=4,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
learning_rate=2.0e-05,
log_level="info",
logging_steps=5,
logging_strategy="steps",
lr_scheduler_type="cosine",
max_steps=-1,
num_train_epochs=1, # Number of times training will go through with same dataset.
output_dir=output_dir,
overwrite_output_dir=True,
per_device_eval_batch_size=8, # You can reduce if out-of memory errors occurs
per_device_train_batch_size=8, # You can reduce if out-of memory errors occurs
report_to="none", # for skipping wandb logging
save_strategy="no",
save_total_limit=None,
)
```
--------------------------------------------------------------------------------------------------------------------------------------------
# Set-up Trainer (Supervised-fine-tuning)
```
trainer = SFTTrainer(
model=model, # Use above quantized model
args=training_args,
train_dataset=train_dataset, # If Training Fails Try to reduce Dataset Size
eval_dataset=test_dataset,
dataset_text_field="text",
tokenizer=tokenizer,
packing=False, # Setting it True will Reduce dataset size as it will exclude similar examples occuring repetitive
peft_config=peft_config,
max_seq_length=1024,
)
```
-------------------------------------------------------------------------------------------------------------------------------------------------
# Note: It may take long Time to train model (several minutes to Hours) depending on your dataset size
```
# To clear out cache for unsuccessful run
torch.cuda.empty_cache()
train_result = trainer.train()
```
------------------------------------------------------------------------------------------------------------------------------------------------------
# Save model in Notebook (in output_directory)
```
trainer.save_model()
```
-------------------------------------------------------------------------------------------------------------------------------------------------------
# Merge LoRA with the base model and save the merged model
```
merged_model = trainer.model.merge_and_unload()
merged_model.save_pretrained("merged_model",safe_serialization=True)
tokenizer.save_pretrained("merged_model")
```
---------------------------------------------------------------------------------------------------------------------------------------------------------
# push merged model to the HuggingFace-hub (You must have logged in already)
```
merged_model.push_to_hub("username/model_name")
tokenizer.push_to_hub("username/model_name")
```
------------------- End of Training and uploading trained model on our huggingface Space ---------------------------------- |