update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: distilroberta-proppy
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# distilroberta-proppy
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1838
|
18 |
+
- Acc: 0.9269
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 32
|
40 |
+
- seed: 12345
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 16
|
44 |
+
- num_epochs: 20
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Acc |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 0.3179 | 1.0 | 732 | 0.2032 | 0.9146 |
|
52 |
+
| 0.2933 | 2.0 | 1464 | 0.2026 | 0.9206 |
|
53 |
+
| 0.2938 | 3.0 | 2196 | 0.1849 | 0.9252 |
|
54 |
+
| 0.3429 | 4.0 | 2928 | 0.1983 | 0.9221 |
|
55 |
+
| 0.2608 | 5.0 | 3660 | 0.2310 | 0.9106 |
|
56 |
+
| 0.2562 | 6.0 | 4392 | 0.1826 | 0.9270 |
|
57 |
+
| 0.2785 | 7.0 | 5124 | 0.1954 | 0.9228 |
|
58 |
+
| 0.307 | 8.0 | 5856 | 0.2056 | 0.9200 |
|
59 |
+
| 0.28 | 9.0 | 6588 | 0.1843 | 0.9259 |
|
60 |
+
| 0.2794 | 10.0 | 7320 | 0.1782 | 0.9299 |
|
61 |
+
| 0.2868 | 11.0 | 8052 | 0.1907 | 0.9242 |
|
62 |
+
| 0.2789 | 12.0 | 8784 | 0.2031 | 0.9216 |
|
63 |
+
| 0.2827 | 13.0 | 9516 | 0.1976 | 0.9229 |
|
64 |
+
| 0.2795 | 14.0 | 10248 | 0.1866 | 0.9255 |
|
65 |
+
| 0.2895 | 15.0 | 10980 | 0.1838 | 0.9269 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.11.2
|
71 |
+
- Pytorch 1.7.1
|
72 |
+
- Datasets 1.11.0
|
73 |
+
- Tokenizers 0.10.3
|