File size: 6,105 Bytes
b8f33ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
{
"cells": [
{
"cell_type": "markdown",
"id": "750fed8c",
"metadata": {},
"source": [
"Must run the following:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ccad76ec",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"D:\\Research\\FinancialMarkets\\Emotions\\Emtract\\Training\\EmTract\n"
]
}
],
"source": [
"!git clone https://github.com/dvamossy/EmTract.git\n",
"%cd EmTract\n",
"!pip install -r requirements.txt "
]
},
{
"cell_type": "markdown",
"id": "2551adee",
"metadata": {},
"source": [
"Text Cleaner for unprocessed text"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "687995ef",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\Research\\FinancialMarkets\\Emotions\\Emtract\\Training\\EmTract\\emtract\\processors\\cleaning.py:68: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n",
" symspell_list = pd.read_csv(\n"
]
},
{
"data": {
"text/plain": [
"'soo well'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from emtract.processors.cleaning import clean_text\n",
"# Illustrate text cleaning\n",
"clean_text(\"soooooo well\", segment_words=False)"
]
},
{
"cell_type": "markdown",
"id": "6b81c0cd",
"metadata": {},
"source": [
"Option I"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ca68eb1",
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"classifier = pipeline(\"text-classification\", model=\"vamossyd/emtract-distilbert-base-uncased-emotion\", return_all_scores=True)\n",
"classifier(\"i love this!\")"
]
},
{
"cell_type": "markdown",
"id": "0b9cd58f",
"metadata": {},
"source": [
"Option II"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "524cb5d6",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"import numpy as np\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer\n",
"\n",
"# Create class for data preparation\n",
"class SimpleDataset:\n",
" def __init__(self, tokenized_texts):\n",
" self.tokenized_texts = tokenized_texts\n",
" \n",
" def __len__(self):\n",
" return len(self.tokenized_texts[\"input_ids\"])\n",
" \n",
" def __getitem__(self, idx):\n",
" return {k: v[idx] for k, v in self.tokenized_texts.items()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f9f01f4",
"metadata": {},
"outputs": [],
"source": [
"input_path = \"PROVIDE_PATH_TO_DATA\"\n",
"# data = pd.read_csv(input_path) # ASSUMING DATA IS IN CSV\n",
"\n",
"# If text is already cleaned:\n",
"# texts = data.text.tolist() \n",
"\n",
"# Otherwise:\n",
"# texts = data['text'].apply(clean_text).tolist() # \n",
"\n",
"# As an example:\n",
"texts = ['i love this', 'i do not love you', 'to the moon π']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "839cd230",
"metadata": {},
"outputs": [],
"source": [
"# load tokenizer and model, create trainer\n",
"model_name = \"vamossyd/emtract-distilbert-base-uncased-emotion\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
"trainer = Trainer(model=model)\n",
"\n",
"# Tokenize texts and create prediction data set\n",
"tokenized_texts = tokenizer(texts, truncation=True, padding=True)\n",
"pred_dataset = SimpleDataset(tokenized_texts)\n",
"predictions = trainer.predict(pred_dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3d903549",
"metadata": {},
"outputs": [],
"source": [
"# scores raw\n",
"temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))\n",
"preds = predictions.predictions.argmax(-1)\n",
"labels = pd.Series(preds).map(model.config.id2label)\n",
"\n",
"# container\n",
"anger = []\n",
"disgust = []\n",
"fear = []\n",
"happy = []\n",
"neutral = []\n",
"sadness = []\n",
"surprise = []\n",
"\n",
"# extract scores (as many entries as exist in pred_texts)\n",
"for i in range(len(texts)):\n",
" anger.append(temp[i][3])\n",
" disgust.append(temp[i][4])\n",
" fear.append(temp[i][6])\n",
" happy.append(temp[i][1])\n",
" neutral.append(temp[i][0])\n",
" sadness.append(temp[i][2])\n",
" surprise.append(temp[i][5])\n",
" \n",
"df = pd.DataFrame(list(zip(texts, labels, anger, disgust, fear, happy, neutral, sadness, surprise)), columns=['text','pred_label', 'anger', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'])\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "577f10b8",
"metadata": {},
"outputs": [],
"source": [
"# save results to csv\n",
"output_path = \"YOUR_FILENAME_EMOTIONS.csv\" # name your output file\n",
"# df.to_csv(YOUR_FILENAME)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|