File size: 6,105 Bytes
b8f33ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "750fed8c",
   "metadata": {},
   "source": [
    "Must run the following:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ccad76ec",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "D:\\Research\\FinancialMarkets\\Emotions\\Emtract\\Training\\EmTract\n"
     ]
    }
   ],
   "source": [
    "!git clone https://github.com/dvamossy/EmTract.git\n",
    "%cd EmTract\n",
    "!pip install -r requirements.txt "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2551adee",
   "metadata": {},
   "source": [
    "Text Cleaner for unprocessed text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "687995ef",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "D:\\Research\\FinancialMarkets\\Emotions\\Emtract\\Training\\EmTract\\emtract\\processors\\cleaning.py:68: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n",
      "  symspell_list = pd.read_csv(\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'soo well'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from emtract.processors.cleaning import clean_text\n",
    "# Illustrate text cleaning\n",
    "clean_text(\"soooooo well\", segment_words=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b81c0cd",
   "metadata": {},
   "source": [
    "Option I"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0ca68eb1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import pipeline\n",
    "classifier = pipeline(\"text-classification\", model=\"vamossyd/emtract-distilbert-base-uncased-emotion\", return_all_scores=True)\n",
    "classifier(\"i love this!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0b9cd58f",
   "metadata": {},
   "source": [
    "Option II"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "524cb5d6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer\n",
    "\n",
    "# Create class for data preparation\n",
    "class SimpleDataset:\n",
    "    def __init__(self, tokenized_texts):\n",
    "        self.tokenized_texts = tokenized_texts\n",
    "    \n",
    "    def __len__(self):\n",
    "        return len(self.tokenized_texts[\"input_ids\"])\n",
    "    \n",
    "    def __getitem__(self, idx):\n",
    "        return {k: v[idx] for k, v in self.tokenized_texts.items()}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1f9f01f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "input_path = \"PROVIDE_PATH_TO_DATA\"\n",
    "# data = pd.read_csv(input_path) # ASSUMING DATA IS IN CSV\n",
    "\n",
    "# If text is already cleaned:\n",
    "# texts = data.text.tolist() \n",
    "\n",
    "# Otherwise:\n",
    "# texts = data['text'].apply(clean_text).tolist() # \n",
    "\n",
    "# As an example:\n",
    "texts = ['i love this', 'i do not love you', 'to the moon πŸš€']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "839cd230",
   "metadata": {},
   "outputs": [],
   "source": [
    "# load tokenizer and model, create trainer\n",
    "model_name = \"vamossyd/emtract-distilbert-base-uncased-emotion\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
    "trainer = Trainer(model=model)\n",
    "\n",
    "# Tokenize texts and create prediction data set\n",
    "tokenized_texts = tokenizer(texts, truncation=True, padding=True)\n",
    "pred_dataset = SimpleDataset(tokenized_texts)\n",
    "predictions = trainer.predict(pred_dataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d903549",
   "metadata": {},
   "outputs": [],
   "source": [
    "# scores raw\n",
    "temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))\n",
    "preds = predictions.predictions.argmax(-1)\n",
    "labels = pd.Series(preds).map(model.config.id2label)\n",
    "\n",
    "# container\n",
    "anger = []\n",
    "disgust = []\n",
    "fear = []\n",
    "happy = []\n",
    "neutral = []\n",
    "sadness = []\n",
    "surprise = []\n",
    "\n",
    "# extract scores (as many entries as exist in pred_texts)\n",
    "for i in range(len(texts)):\n",
    "    anger.append(temp[i][3])\n",
    "    disgust.append(temp[i][4])\n",
    "    fear.append(temp[i][6])\n",
    "    happy.append(temp[i][1])\n",
    "    neutral.append(temp[i][0])\n",
    "    sadness.append(temp[i][2])\n",
    "    surprise.append(temp[i][5])\n",
    "    \n",
    "df = pd.DataFrame(list(zip(texts, labels, anger, disgust, fear, happy, neutral, sadness, surprise)), columns=['text','pred_label', 'anger', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'])\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "577f10b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# save results to csv\n",
    "output_path = \"YOUR_FILENAME_EMOTIONS.csv\"  # name your output file\n",
    "# df.to_csv(YOUR_FILENAME)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}