File size: 2,946 Bytes
40b854a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279eb54
 
40b854a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279eb54
40b854a
 
 
 
 
6ca5ca6
40b854a
279eb54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b854a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-v0.1
datasets:
- generator
model-index:
- name: Mixtral_Alpace_v2_NIKI
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mixtral_Alpace_v2_NIKI

This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1688

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 300

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3725        | 0.0606 | 10   | 1.3384          |
| 1.339         | 0.1212 | 20   | 1.3260          |
| 1.3448        | 0.1818 | 30   | 1.3121          |
| 1.2777        | 0.2424 | 40   | 1.2984          |
| 1.3067        | 0.3030 | 50   | 1.2853          |
| 1.2674        | 0.3636 | 60   | 1.2723          |
| 1.2842        | 0.4242 | 70   | 1.2610          |
| 1.2835        | 0.4848 | 80   | 1.2505          |
| 1.2688        | 0.5455 | 90   | 1.2406          |
| 1.2892        | 0.6061 | 100  | 1.2315          |
| 1.2565        | 0.6667 | 110  | 1.2236          |
| 1.2145        | 0.7273 | 120  | 1.2163          |
| 1.2297        | 0.7879 | 130  | 1.2101          |
| 1.2406        | 0.8485 | 140  | 1.2042          |
| 1.2146        | 0.9091 | 150  | 1.1986          |
| 1.2386        | 0.9697 | 160  | 1.1940          |
| 1.1929        | 1.0303 | 170  | 1.1899          |
| 1.2036        | 1.0909 | 180  | 1.1869          |
| 1.181         | 1.1515 | 190  | 1.1837          |
| 1.201         | 1.2121 | 200  | 1.1812          |
| 1.1965        | 1.2727 | 210  | 1.1786          |
| 1.2084        | 1.3333 | 220  | 1.1765          |
| 1.2097        | 1.3939 | 230  | 1.1746          |
| 1.176         | 1.4545 | 240  | 1.1727          |
| 1.1757        | 1.5152 | 250  | 1.1715          |
| 1.1977        | 1.5758 | 260  | 1.1705          |
| 1.1686        | 1.6364 | 270  | 1.1701          |
| 1.1679        | 1.6970 | 280  | 1.1694          |
| 1.1779        | 1.7576 | 290  | 1.1690          |
| 1.179         | 1.8182 | 300  | 1.1688          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1