update model
Browse files- README.md +148 -58
- config.json +4 -2
- model.safetensors +1 -1
- onnx/model.onnx +3 -0
- onnx/model_bnb4.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_int8.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
- quantize_config.json +18 -0
README.md
CHANGED
@@ -4,37 +4,56 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:CosineSimilarityLoss
|
9 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
sentences:
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
- source_sentence:
|
17 |
sentences:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- source_sentence:
|
22 |
sentences:
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
- source_sentence:
|
27 |
sentences:
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
- source_sentence:
|
32 |
sentences:
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
---
|
39 |
|
40 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
@@ -63,7 +82,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
63 |
|
64 |
```
|
65 |
SentenceTransformer(
|
66 |
-
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
67 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
(2): Normalize()
|
69 |
)
|
@@ -84,12 +103,12 @@ Then you can load this model and run inference.
|
|
84 |
from sentence_transformers import SentenceTransformer
|
85 |
|
86 |
# Download from the 🤗 Hub
|
87 |
-
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-
|
88 |
# Run inference
|
89 |
sentences = [
|
90 |
-
'
|
91 |
-
'
|
92 |
-
'
|
93 |
]
|
94 |
embeddings = model.encode(sentences)
|
95 |
print(embeddings.shape)
|
@@ -125,6 +144,19 @@ You can finetune this model on your own dataset.
|
|
125 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
-->
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
<!--
|
129 |
## Bias, Risks and Limitations
|
130 |
|
@@ -166,7 +198,8 @@ You can finetune this model on your own dataset.
|
|
166 |
### Training Hyperparameters
|
167 |
#### Non-Default Hyperparameters
|
168 |
|
169 |
-
- `
|
|
|
170 |
- `multi_dataset_batch_sampler`: round_robin
|
171 |
|
172 |
#### All Hyperparameters
|
@@ -176,8 +209,8 @@ You can finetune this model on your own dataset.
|
|
176 |
- `do_predict`: False
|
177 |
- `eval_strategy`: no
|
178 |
- `prediction_loss_only`: True
|
179 |
-
- `per_device_train_batch_size`:
|
180 |
-
- `per_device_eval_batch_size`:
|
181 |
- `per_gpu_train_batch_size`: None
|
182 |
- `per_gpu_eval_batch_size`: None
|
183 |
- `gradient_accumulation_steps`: 1
|
@@ -189,7 +222,7 @@ You can finetune this model on your own dataset.
|
|
189 |
- `adam_beta2`: 0.999
|
190 |
- `adam_epsilon`: 1e-08
|
191 |
- `max_grad_norm`: 1
|
192 |
-
- `num_train_epochs`:
|
193 |
- `max_steps`: -1
|
194 |
- `lr_scheduler_type`: linear
|
195 |
- `lr_scheduler_kwargs`: {}
|
@@ -264,7 +297,7 @@ You can finetune this model on your own dataset.
|
|
264 |
- `fp16_backend`: auto
|
265 |
- `push_to_hub_model_id`: None
|
266 |
- `push_to_hub_organization`: None
|
267 |
-
- `mp_parameters`:
|
268 |
- `auto_find_batch_size`: False
|
269 |
- `full_determinism`: False
|
270 |
- `torchdynamo`: None
|
@@ -291,32 +324,89 @@ You can finetune this model on your own dataset.
|
|
291 |
</details>
|
292 |
|
293 |
### Training Logs
|
294 |
-
| Epoch | Step | Training Loss |
|
295 |
-
|
296 |
-
| 0.
|
297 |
-
| 0.
|
298 |
-
| 0.
|
299 |
-
| 0.
|
300 |
-
| 0.
|
301 |
-
| 0.
|
302 |
-
| 0.
|
303 |
-
| 0.
|
304 |
-
| 0.
|
305 |
-
| 0.
|
306 |
-
| 0.
|
307 |
-
| 0.
|
308 |
-
|
|
309 |
-
|
|
310 |
-
|
|
311 |
-
|
|
312 |
-
|
|
313 |
-
|
|
314 |
-
|
|
315 |
-
|
|
316 |
-
|
|
317 |
-
|
|
318 |
-
|
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
### Framework Versions
|
@@ -361,4 +451,4 @@ You can finetune this model on your own dataset.
|
|
361 |
## Model Card Contact
|
362 |
|
363 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
364 |
-
-->
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:429643
|
8 |
- loss:CosineSimilarityLoss
|
9 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
widget:
|
11 |
+
- source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises
|
12 |
sentences:
|
13 |
+
- PulseAudio - Ubuntu Wiki
|
14 |
+
- Documentation page not found - Read the Docs
|
15 |
+
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
|
16 |
+
- source_sentence: Suggest opt in User Test - Google Slides
|
17 |
sentences:
|
18 |
+
- ReleaseEngineering/TryServer - MozillaWiki
|
19 |
+
- Dwarf Fortress beginner tips - Video Games on Sports Illustrated
|
20 |
+
- Tutanota - Private Mailbox with End-to-End Encryption and Calendar
|
21 |
+
- source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx
|
22 |
sentences:
|
23 |
+
- What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides
|
24 |
+
- Parents.com - Articles, Recipes, and Ideas for Family Activities
|
25 |
+
- Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic
|
26 |
+
- source_sentence: Apple Music - Web Player
|
27 |
sentences:
|
28 |
+
- BMW Connected Drive - Home Assistant
|
29 |
+
- Mary Stewart Phillips (1862-1928) - Find a Grave Memorial
|
30 |
+
- Sky Sports - Football, Formula 1, Cricket, and More
|
31 |
+
- source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio
|
32 |
sentences:
|
33 |
+
- Walmart - Everyday Low Prices on Groceries, Electronics, and More
|
34 |
+
- Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis
|
35 |
+
- Ambient Dreams Playlist on Amazon Music
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
+
metrics:
|
39 |
+
- pearson_cosine
|
40 |
+
- spearman_cosine
|
41 |
+
model-index:
|
42 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: semantic-similarity
|
46 |
+
name: Semantic Similarity
|
47 |
+
dataset:
|
48 |
+
name: Unknown
|
49 |
+
type: unknown
|
50 |
+
metrics:
|
51 |
+
- type: pearson_cosine
|
52 |
+
value: 0.9822505655251419
|
53 |
+
name: Pearson Cosine
|
54 |
+
- type: spearman_cosine
|
55 |
+
value: 0.2607864200673379
|
56 |
+
name: Spearman Cosine
|
57 |
---
|
58 |
|
59 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
|
|
82 |
|
83 |
```
|
84 |
SentenceTransformer(
|
85 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
86 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
87 |
(2): Normalize()
|
88 |
)
|
|
|
103 |
from sentence_transformers import SentenceTransformer
|
104 |
|
105 |
# Download from the 🤗 Hub
|
106 |
+
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0")
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
+
'Tidal - High-Fidelity Music Streaming with Master Quality Audio',
|
110 |
+
'Walmart - Everyday Low Prices on Groceries, Electronics, and More',
|
111 |
+
'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis',
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
|
|
144 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
145 |
-->
|
146 |
|
147 |
+
## Evaluation
|
148 |
+
|
149 |
+
### Metrics
|
150 |
+
|
151 |
+
#### Semantic Similarity
|
152 |
+
|
153 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
154 |
+
|
155 |
+
| Metric | Value |
|
156 |
+
|:--------------------|:-----------|
|
157 |
+
| pearson_cosine | 0.9823 |
|
158 |
+
| **spearman_cosine** | **0.2608** |
|
159 |
+
|
160 |
<!--
|
161 |
## Bias, Risks and Limitations
|
162 |
|
|
|
198 |
### Training Hyperparameters
|
199 |
#### Non-Default Hyperparameters
|
200 |
|
201 |
+
- `per_device_train_batch_size`: 32
|
202 |
+
- `per_device_eval_batch_size`: 32
|
203 |
- `multi_dataset_batch_sampler`: round_robin
|
204 |
|
205 |
#### All Hyperparameters
|
|
|
209 |
- `do_predict`: False
|
210 |
- `eval_strategy`: no
|
211 |
- `prediction_loss_only`: True
|
212 |
+
- `per_device_train_batch_size`: 32
|
213 |
+
- `per_device_eval_batch_size`: 32
|
214 |
- `per_gpu_train_batch_size`: None
|
215 |
- `per_gpu_eval_batch_size`: None
|
216 |
- `gradient_accumulation_steps`: 1
|
|
|
222 |
- `adam_beta2`: 0.999
|
223 |
- `adam_epsilon`: 1e-08
|
224 |
- `max_grad_norm`: 1
|
225 |
+
- `num_train_epochs`: 3
|
226 |
- `max_steps`: -1
|
227 |
- `lr_scheduler_type`: linear
|
228 |
- `lr_scheduler_kwargs`: {}
|
|
|
297 |
- `fp16_backend`: auto
|
298 |
- `push_to_hub_model_id`: None
|
299 |
- `push_to_hub_organization`: None
|
300 |
+
- `mp_parameters`:
|
301 |
- `auto_find_batch_size`: False
|
302 |
- `full_determinism`: False
|
303 |
- `torchdynamo`: None
|
|
|
324 |
</details>
|
325 |
|
326 |
### Training Logs
|
327 |
+
| Epoch | Step | Training Loss | spearman_cosine |
|
328 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
329 |
+
| 0.0372 | 500 | 0.0218 | - |
|
330 |
+
| 0.0745 | 1000 | 0.0151 | - |
|
331 |
+
| 0.1117 | 1500 | 0.0113 | - |
|
332 |
+
| 0.1490 | 2000 | 0.0076 | - |
|
333 |
+
| 0.1862 | 2500 | 0.0063 | - |
|
334 |
+
| 0.2234 | 3000 | 0.0054 | - |
|
335 |
+
| 0.2607 | 3500 | 0.0045 | - |
|
336 |
+
| 0.2979 | 4000 | 0.0041 | - |
|
337 |
+
| 0.3351 | 4500 | 0.0027 | - |
|
338 |
+
| 0.3724 | 5000 | 0.0028 | - |
|
339 |
+
| 0.4096 | 5500 | 0.0026 | - |
|
340 |
+
| 0.4469 | 6000 | 0.0021 | - |
|
341 |
+
| 0.4841 | 6500 | 0.0019 | - |
|
342 |
+
| 0.5213 | 7000 | 0.0022 | - |
|
343 |
+
| 0.5586 | 7500 | 0.0017 | - |
|
344 |
+
| 0.5958 | 8000 | 0.0018 | - |
|
345 |
+
| 0.6331 | 8500 | 0.0015 | - |
|
346 |
+
| 0.6703 | 9000 | 0.0015 | - |
|
347 |
+
| 0.7075 | 9500 | 0.0018 | - |
|
348 |
+
| 0.7448 | 10000 | 0.0014 | - |
|
349 |
+
| 0.7820 | 10500 | 0.0017 | - |
|
350 |
+
| 0.8192 | 11000 | 0.0012 | - |
|
351 |
+
| 0.8565 | 11500 | 0.0014 | - |
|
352 |
+
| 0.8937 | 12000 | 0.001 | - |
|
353 |
+
| 0.9310 | 12500 | 0.0011 | - |
|
354 |
+
| 0.9682 | 13000 | 0.001 | - |
|
355 |
+
| 1.0054 | 13500 | 0.0009 | - |
|
356 |
+
| 1.0427 | 14000 | 0.0011 | - |
|
357 |
+
| 1.0799 | 14500 | 0.001 | - |
|
358 |
+
| 1.1172 | 15000 | 0.0009 | - |
|
359 |
+
| 1.1544 | 15500 | 0.0008 | - |
|
360 |
+
| 1.1916 | 16000 | 0.001 | - |
|
361 |
+
| 1.2289 | 16500 | 0.0011 | - |
|
362 |
+
| 1.2661 | 17000 | 0.0011 | - |
|
363 |
+
| 1.3033 | 17500 | 0.0006 | - |
|
364 |
+
| 1.3406 | 18000 | 0.0011 | - |
|
365 |
+
| 1.3778 | 18500 | 0.0008 | - |
|
366 |
+
| 1.4151 | 19000 | 0.0011 | - |
|
367 |
+
| 1.4523 | 19500 | 0.0009 | - |
|
368 |
+
| 1.4895 | 20000 | 0.0011 | - |
|
369 |
+
| 1.5268 | 20500 | 0.0009 | - |
|
370 |
+
| 1.5640 | 21000 | 0.0009 | - |
|
371 |
+
| 1.6013 | 21500 | 0.0008 | - |
|
372 |
+
| 1.6385 | 22000 | 0.0005 | - |
|
373 |
+
| 1.6757 | 22500 | 0.001 | - |
|
374 |
+
| 1.7130 | 23000 | 0.0008 | - |
|
375 |
+
| 1.7502 | 23500 | 0.0007 | - |
|
376 |
+
| 1.7874 | 24000 | 0.0007 | - |
|
377 |
+
| 1.8247 | 24500 | 0.0008 | - |
|
378 |
+
| 1.8619 | 25000 | 0.001 | - |
|
379 |
+
| 1.8992 | 25500 | 0.0009 | - |
|
380 |
+
| 1.9364 | 26000 | 0.0008 | - |
|
381 |
+
| 1.9736 | 26500 | 0.0009 | - |
|
382 |
+
| 2.0109 | 27000 | 0.0007 | - |
|
383 |
+
| 2.0481 | 27500 | 0.0006 | - |
|
384 |
+
| 2.0854 | 28000 | 0.0007 | - |
|
385 |
+
| 2.1226 | 28500 | 0.0006 | - |
|
386 |
+
| 2.1598 | 29000 | 0.0007 | - |
|
387 |
+
| 2.1971 | 29500 | 0.001 | - |
|
388 |
+
| 2.2343 | 30000 | 0.0006 | - |
|
389 |
+
| 2.2715 | 30500 | 0.0006 | - |
|
390 |
+
| 2.3088 | 31000 | 0.001 | - |
|
391 |
+
| 2.3460 | 31500 | 0.0007 | - |
|
392 |
+
| 2.3833 | 32000 | 0.0008 | - |
|
393 |
+
| 2.4205 | 32500 | 0.0006 | - |
|
394 |
+
| 2.4577 | 33000 | 0.0007 | - |
|
395 |
+
| 2.4950 | 33500 | 0.0007 | - |
|
396 |
+
| 2.5322 | 34000 | 0.001 | - |
|
397 |
+
| 2.5694 | 34500 | 0.0007 | - |
|
398 |
+
| 2.6067 | 35000 | 0.0007 | - |
|
399 |
+
| 2.6439 | 35500 | 0.0008 | - |
|
400 |
+
| 2.6812 | 36000 | 0.0007 | - |
|
401 |
+
| 2.7184 | 36500 | 0.0006 | - |
|
402 |
+
| 2.7556 | 37000 | 0.0007 | - |
|
403 |
+
| 2.7929 | 37500 | 0.0007 | - |
|
404 |
+
| 2.8301 | 38000 | 0.0005 | - |
|
405 |
+
| 2.8674 | 38500 | 0.0009 | - |
|
406 |
+
| 2.9046 | 39000 | 0.0006 | - |
|
407 |
+
| 2.9418 | 39500 | 0.0007 | - |
|
408 |
+
| 2.9791 | 40000 | 0.0008 | - |
|
409 |
+
| -1 | -1 | - | 0.2608 |
|
410 |
|
411 |
|
412 |
### Framework Versions
|
|
|
451 |
## Model Card Contact
|
452 |
|
453 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
454 |
+
-->
|
config.json
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
8 |
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
@@ -19,7 +21,7 @@
|
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "/content/model",
|
4 |
"architectures": [
|
5 |
"BertModel"
|
6 |
],
|
7 |
"attention_probs_dropout_prob": 0.1,
|
8 |
"classifier_dropout": null,
|
9 |
+
"export_model_type": "transformer",
|
10 |
"gradient_checkpointing": false,
|
11 |
"hidden_act": "gelu",
|
12 |
"hidden_dropout_prob": 0.1,
|
|
|
21 |
"pad_token_id": 0,
|
22 |
"position_embedding_type": "absolute",
|
23 |
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.46.3",
|
25 |
"type_vocab_size": 2,
|
26 |
"use_cache": true,
|
27 |
"vocab_size": 30522
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cce795656a2f5901d70c4ea6568b7c98a136a9f653ec4e8e499ac26270beffcb
|
3 |
size 90864192
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:506ac8fdb54c3d5401fc03fb7cc135553857779e2cc518dfb3341cf113ebe257
|
3 |
+
size 90448255
|
onnx/model_bnb4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77f96020b60846dbd7f86538280364c6f5e7d1fce2a1753debe0fa28a5b2a1dc
|
3 |
+
size 53958494
|
onnx/model_fp16.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:492935c401e7ae513a959c9433dd204f159b501593bf732507b94d73081ae14d
|
3 |
+
size 45317631
|
onnx/model_int8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d8575a3ba5d8a44884f56579d2046d5883e4bbef1923840f7b6b561bc6a6918
|
3 |
+
size 22999753
|
onnx/model_q4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:235764145072d6bc5e6ab9f61f17e893f47dd02cc6eef3a5a1967fbfbae31523
|
3 |
+
size 54621818
|
onnx/model_q4f16.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a462c3bbf68ad9d80c3367342d67fba38b871f683bd78a741479e9df6017dba
|
3 |
+
size 30061282
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d8575a3ba5d8a44884f56579d2046d5883e4bbef1923840f7b6b561bc6a6918
|
3 |
+
size 22999753
|
onnx/model_uint8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d985ea995e76faa0d7f542db38a3e08ecfedfc8b9cfa1143e8c13398803019d
|
3 |
+
size 22999753
|
quantize_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"modes": [
|
3 |
+
"fp16",
|
4 |
+
"q8",
|
5 |
+
"int8",
|
6 |
+
"uint8",
|
7 |
+
"q4",
|
8 |
+
"q4f16",
|
9 |
+
"bnb4"
|
10 |
+
],
|
11 |
+
"per_channel": true,
|
12 |
+
"reduce_range": true,
|
13 |
+
"block_size": null,
|
14 |
+
"is_symmetric": true,
|
15 |
+
"accuracy_level": null,
|
16 |
+
"quant_type": 1,
|
17 |
+
"op_block_list": null
|
18 |
+
}
|