vdos commited on
Commit
e56ab81
1 Parent(s): 035a7a9

End of training

Browse files
Files changed (2) hide show
  1. README.md +143 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: katuni4ka/tiny-random-qwen1.5-moe
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 7c5b2537-9d63-44f7-b57a-a2abe7ee990c
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.5.2`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: katuni4ka/tiny-random-qwen1.5-moe
22
+ bf16: auto
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 271e467f149eda59_train_data.json
28
+ ds_type: json
29
+ field: instruction
30
+ path: /workspace/input_data/271e467f149eda59_train_data.json
31
+ type: completion
32
+ debug: null
33
+ deepspeed: null
34
+ early_stopping_patience: 1
35
+ eval_max_new_tokens: 128
36
+ eval_steps: 25
37
+ eval_table_size: null
38
+ flash_attention: false
39
+ fp16: false
40
+ fsdp: null
41
+ fsdp_config: null
42
+ gradient_accumulation_steps: 16
43
+ gradient_checkpointing: true
44
+ group_by_length: true
45
+ hub_model_id: vdos/7c5b2537-9d63-44f7-b57a-a2abe7ee990c
46
+ hub_repo: null
47
+ hub_strategy: checkpoint
48
+ hub_token: null
49
+ learning_rate: 0.0001
50
+ load_in_4bit: false
51
+ load_in_8bit: false
52
+ local_rank: null
53
+ logging_steps: 1
54
+ lora_alpha: 64
55
+ lora_dropout: 0.05
56
+ lora_fan_in_fan_out: null
57
+ lora_model_dir: null
58
+ lora_r: 32
59
+ lora_target_linear: true
60
+ lr_scheduler: cosine
61
+ max_steps: 50
62
+ micro_batch_size: 2
63
+ mlflow_experiment_name: /tmp/271e467f149eda59_train_data.json
64
+ model_type: AutoModelForCausalLM
65
+ num_epochs: 3
66
+ optimizer: adamw_torch
67
+ output_dir: miner_id_24
68
+ pad_to_sequence_len: true
69
+ resume_from_checkpoint: null
70
+ s2_attention: null
71
+ sample_packing: false
72
+ save_steps: 25
73
+ sequence_len: 2048
74
+ strict: false
75
+ tf32: false
76
+ tokenizer_type: AutoTokenizer
77
+ train_on_inputs: false
78
+ trust_remote_code: true
79
+ val_set_size: 0.05
80
+ wandb_entity: null
81
+ wandb_mode: online
82
+ wandb_name: 7c5b2537-9d63-44f7-b57a-a2abe7ee990c
83
+ wandb_project: Gradients-On-Demand
84
+ wandb_run: your_name
85
+ wandb_runid: 7c5b2537-9d63-44f7-b57a-a2abe7ee990c
86
+ warmup_ratio: 0.05
87
+ weight_decay: 0.01
88
+ xformers_attention: true
89
+
90
+ ```
91
+
92
+ </details><br>
93
+
94
+ # 7c5b2537-9d63-44f7-b57a-a2abe7ee990c
95
+
96
+ This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 11.9387
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 0.0001
118
+ - train_batch_size: 2
119
+ - eval_batch_size: 2
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - num_devices: 4
123
+ - gradient_accumulation_steps: 16
124
+ - total_train_batch_size: 128
125
+ - total_eval_batch_size: 8
126
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
127
+ - lr_scheduler_type: cosine
128
+ - training_steps: 18
129
+
130
+ ### Training results
131
+
132
+ | Training Loss | Epoch | Step | Validation Loss |
133
+ |:-------------:|:------:|:----:|:---------------:|
134
+ | 11.5478 | 0.1684 | 1 | 11.9387 |
135
+
136
+
137
+ ### Framework versions
138
+
139
+ - PEFT 0.13.2
140
+ - Transformers 4.46.3
141
+ - Pytorch 2.3.1+cu121
142
+ - Datasets 3.1.0
143
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40d6743ab18541dd9878c3f3889680f73b60f6a579600a8333bd6e18911868ff
3
+ size 1265130