remove .cuda() expressions
Browse files- README.md +1 -1
- modeling_GOT.py +6 -6
README.md
CHANGED
@@ -42,7 +42,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
42 |
|
43 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
44 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
45 |
-
model = model.eval()
|
46 |
|
47 |
|
48 |
# input your test image
|
|
|
42 |
|
43 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
44 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
45 |
+
model = model.eval()
|
46 |
|
47 |
|
48 |
# input your test image
|
modeling_GOT.py
CHANGED
@@ -558,7 +558,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
558 |
|
559 |
image_tensor_1 = image_processor_high(image)
|
560 |
|
561 |
-
input_ids = torch.as_tensor(inputs.input_ids)
|
562 |
|
563 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
564 |
keywords = [stop_str]
|
@@ -569,7 +569,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
569 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
570 |
output_ids = self.generate(
|
571 |
input_ids,
|
572 |
-
images=[image_tensor_1.unsqueeze(0).half()
|
573 |
do_sample=False,
|
574 |
num_beams = 1,
|
575 |
no_repeat_ngram_size = 20,
|
@@ -581,7 +581,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
581 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
582 |
output_ids = self.generate(
|
583 |
input_ids,
|
584 |
-
images=[image_tensor_1.unsqueeze(0).half()
|
585 |
do_sample=False,
|
586 |
num_beams = 1,
|
587 |
no_repeat_ngram_size = 20,
|
@@ -812,7 +812,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
812 |
|
813 |
inputs = tokenizer([prompt])
|
814 |
|
815 |
-
input_ids = torch.as_tensor(inputs.input_ids)
|
816 |
|
817 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
818 |
keywords = [stop_str]
|
@@ -823,7 +823,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
823 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
824 |
output_ids = self.generate(
|
825 |
input_ids,
|
826 |
-
images=[image_list.half()
|
827 |
do_sample=False,
|
828 |
num_beams = 1,
|
829 |
# no_repeat_ngram_size = 20,
|
@@ -835,7 +835,7 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
835 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
836 |
output_ids = self.generate(
|
837 |
input_ids,
|
838 |
-
images=[image_list.half()
|
839 |
do_sample=False,
|
840 |
num_beams = 1,
|
841 |
# no_repeat_ngram_size = 20,
|
|
|
558 |
|
559 |
image_tensor_1 = image_processor_high(image)
|
560 |
|
561 |
+
input_ids = torch.as_tensor(inputs.input_ids)
|
562 |
|
563 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
564 |
keywords = [stop_str]
|
|
|
569 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
570 |
output_ids = self.generate(
|
571 |
input_ids,
|
572 |
+
images=[image_tensor_1.unsqueeze(0).half()],
|
573 |
do_sample=False,
|
574 |
num_beams = 1,
|
575 |
no_repeat_ngram_size = 20,
|
|
|
581 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
582 |
output_ids = self.generate(
|
583 |
input_ids,
|
584 |
+
images=[image_tensor_1.unsqueeze(0).half()],
|
585 |
do_sample=False,
|
586 |
num_beams = 1,
|
587 |
no_repeat_ngram_size = 20,
|
|
|
812 |
|
813 |
inputs = tokenizer([prompt])
|
814 |
|
815 |
+
input_ids = torch.as_tensor(inputs.input_ids)
|
816 |
|
817 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
818 |
keywords = [stop_str]
|
|
|
823 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
824 |
output_ids = self.generate(
|
825 |
input_ids,
|
826 |
+
images=[image_list.half()],
|
827 |
do_sample=False,
|
828 |
num_beams = 1,
|
829 |
# no_repeat_ngram_size = 20,
|
|
|
835 |
with torch.autocast("cuda", dtype=torch.bfloat16):
|
836 |
output_ids = self.generate(
|
837 |
input_ids,
|
838 |
+
images=[image_list.half()],
|
839 |
do_sample=False,
|
840 |
num_beams = 1,
|
841 |
# no_repeat_ngram_size = 20,
|