venture2 commited on
Commit
4544866
·
verified ·
1 Parent(s): ac89809

Create MODEL

Browse files
Files changed (1) hide show
  1. MODEL +197 -0
MODEL ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File: boundless_perfect_intelligence.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import os
6
+ import numpy as np
7
+ import pickle
8
+ from threading import Thread
9
+ from queue import Queue
10
+
11
+ # Infinite Memory Simulation with Dynamic Scaling
12
+ class InfiniteMemory:
13
+ def __init__(self, memory_dir="infinite_memory", chunk_size=1e6):
14
+ self.memory_dir = memory_dir
15
+ self.chunk_size = int(chunk_size)
16
+ self.current_chunk = 0
17
+ self.memory_map = {}
18
+
19
+ os.makedirs(self.memory_dir, exist_ok=True)
20
+
21
+ def _get_chunk_path(self, chunk_id):
22
+ return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl")
23
+
24
+ def write(self, key, value):
25
+ """Dynamically writes data to infinite memory."""
26
+ if len(self.memory_map) >= self.chunk_size:
27
+ self._flush_to_disk()
28
+ self.memory_map = {}
29
+ self.current_chunk += 1
30
+ self.memory_map[key] = value
31
+
32
+ def read(self, key):
33
+ """Dynamically reads data from infinite memory."""
34
+ if key in self.memory_map:
35
+ return self.memory_map[key]
36
+ for chunk_id in range(self.current_chunk + 1):
37
+ chunk_path = self._get_chunk_path(chunk_id)
38
+ if os.path.exists(chunk_path):
39
+ with open(chunk_path, "rb") as f:
40
+ chunk_data = pickle.load(f)
41
+ if key in chunk_data:
42
+ return chunk_data[key]
43
+ return "Not Found"
44
+
45
+ def simulate_data(self, num_items=1e9):
46
+ """Simulates preloading infinite memory."""
47
+ print(f"Preloading {num_items:.0f} items into memory...")
48
+ for i in range(int(num_items)):
49
+ self.write(f"key_{i}", np.random.rand(1000)) # Large simulated data
50
+ print("Preload complete.")
51
+
52
+ # Recursive Reasoning with Infinite Depth
53
+ class InfiniteReasoningNet(nn.Module):
54
+ def __init__(self, base_dim):
55
+ super(InfiniteReasoningNet, self).__init__()
56
+ self.base_layer = nn.Sequential(
57
+ nn.Linear(base_dim, base_dim * 2),
58
+ nn.ReLU(),
59
+ nn.Linear(base_dim * 2, base_dim)
60
+ )
61
+
62
+ def forward(self, x, max_depth=None):
63
+ """Simulates infinite reasoning."""
64
+ depth = 0
65
+ while max_depth is None or depth < max_depth:
66
+ x = self.base_layer(x)
67
+ depth += 1
68
+ return x
69
+
70
+ # Infinite Multimodal Generator
71
+ class InfiniteMultimodalGenerator(nn.Module):
72
+ def __init__(self, base_dim):
73
+ super(InfiniteMultimodalGenerator, self).__init__()
74
+ self.base_dim = base_dim
75
+ self.style_layer = nn.Sequential(
76
+ nn.Linear(base_dim, base_dim * 4),
77
+ nn.ReLU()
78
+ )
79
+ self.content_layer = nn.Sequential(
80
+ nn.Linear(base_dim, base_dim * 4),
81
+ nn.Tanh()
82
+ )
83
+ self.output_layer = nn.Linear(base_dim * 4, 1) # Adaptively scales outputs
84
+
85
+ def forward(self, style_vector, content_vector, resolution=None):
86
+ """Generates outputs at arbitrary resolution."""
87
+ style_features = self.style_layer(style_vector)
88
+ content_features = self.content_layer(content_vector)
89
+ combined_features = style_features + content_features
90
+
91
+ # Simulate output generation based on resolution
92
+ if resolution:
93
+ pixels = resolution[0] * resolution[1] * 3
94
+ output = self.output_layer(combined_features)
95
+ return output.view(-1, 3, resolution[0], resolution[1])
96
+ return combined_features
97
+
98
+ # Unlimited Task Manager
99
+ class UnlimitedTaskManager:
100
+ def __init__(self):
101
+ self.task_queue = Queue()
102
+ self.threads = []
103
+
104
+ def add_task(self, task, *args):
105
+ """Adds a task to the infinite task queue."""
106
+ self.task_queue.put((task, args))
107
+
108
+ def _worker(self):
109
+ while True:
110
+ task, args = self.task_queue.get()
111
+ try:
112
+ task(*args)
113
+ except Exception as e:
114
+ print(f"Task failed: {e}")
115
+ finally:
116
+ self.task_queue.task_done()
117
+
118
+ def start_workers(self, num_workers=1000):
119
+ """Starts an infinite number of workers."""
120
+ for _ in range(num_workers):
121
+ thread = Thread(target=self._worker, daemon=True)
122
+ thread.start()
123
+ self.threads.append(thread)
124
+
125
+ def wait_for_completion(self):
126
+ """Waits for all tasks to finish."""
127
+ self.task_queue.join()
128
+
129
+ # Unified Boundless API
130
+ class BoundlessArtificialPerfectIntelligence(nn.Module):
131
+ def __init__(self, memory, reasoning, generator, task_manager):
132
+ super(BoundlessArtificialPerfectIntelligence, self).__init__()
133
+ self.memory = memory
134
+ self.reasoning = reasoning
135
+ self.generator = generator
136
+ self.task_manager = task_manager
137
+
138
+ def forward(self, mode, **kwargs):
139
+ if mode == "reasoning":
140
+ input_tensor = kwargs.get("input_tensor")
141
+ max_depth = kwargs.get("max_depth")
142
+ return self.reasoning(input_tensor, max_depth)
143
+
144
+ elif mode == "memory_write":
145
+ key = kwargs.get("key")
146
+ value = kwargs.get("value")
147
+ self.memory.write(key, value)
148
+ return f"Stored key: {key}"
149
+
150
+ elif mode == "memory_read":
151
+ key = kwargs.get("key")
152
+ return self.memory.read(key)
153
+
154
+ elif mode == "generation":
155
+ style_vector = kwargs.get("style_vector")
156
+ content_vector = kwargs.get("content_vector")
157
+ resolution = kwargs.get("resolution")
158
+ return self.generator(style_vector, content_vector, resolution)
159
+
160
+ elif mode == "task_add":
161
+ task = kwargs.get("task")
162
+ args = kwargs.get("args", [])
163
+ self.task_manager.add_task(task, *args)
164
+ return "Task added to the infinite task queue."
165
+
166
+ return "Invalid Mode"
167
+
168
+ # Main Execution
169
+ if __name__ == "__main__":
170
+ # Configuration
171
+ base_dim = 65536
172
+
173
+ # Components
174
+ infinite_memory = InfiniteMemory()
175
+ infinite_memory.simulate_data(num_items=1e6) # Simulate 1 million items
176
+
177
+ reasoning_net = InfiniteReasoningNet(base_dim)
178
+ generator = InfiniteMultimodalGenerator(base_dim)
179
+ task_manager = UnlimitedTaskManager()
180
+ task_manager.start_workers(num_workers=1000)
181
+
182
+ # Initialize Boundless API
183
+ api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager)
184
+
185
+ # Test API
186
+ print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100))
187
+ print("Memory Write:", api("memory_write", key="infinity", value="∞"))
188
+ print("Memory Read:", api("memory_read", key="infinity"))
189
+ print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape)
190
+
191
+ # Infinite Task Example
192
+ def example_task(x, y):
193
+ print(f"Task executed: {x} + {y} = {x + y}")
194
+
195
+ for i in range(10):
196
+ api("task_add", task=example_task, args=(i, i * 2))
197
+ task_manager.wait_for_completion()