Create MODEL
Browse files
MODEL
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# File: boundless_perfect_intelligence.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import pickle
|
8 |
+
from threading import Thread
|
9 |
+
from queue import Queue
|
10 |
+
|
11 |
+
# Infinite Memory Simulation with Dynamic Scaling
|
12 |
+
class InfiniteMemory:
|
13 |
+
def __init__(self, memory_dir="infinite_memory", chunk_size=1e6):
|
14 |
+
self.memory_dir = memory_dir
|
15 |
+
self.chunk_size = int(chunk_size)
|
16 |
+
self.current_chunk = 0
|
17 |
+
self.memory_map = {}
|
18 |
+
|
19 |
+
os.makedirs(self.memory_dir, exist_ok=True)
|
20 |
+
|
21 |
+
def _get_chunk_path(self, chunk_id):
|
22 |
+
return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl")
|
23 |
+
|
24 |
+
def write(self, key, value):
|
25 |
+
"""Dynamically writes data to infinite memory."""
|
26 |
+
if len(self.memory_map) >= self.chunk_size:
|
27 |
+
self._flush_to_disk()
|
28 |
+
self.memory_map = {}
|
29 |
+
self.current_chunk += 1
|
30 |
+
self.memory_map[key] = value
|
31 |
+
|
32 |
+
def read(self, key):
|
33 |
+
"""Dynamically reads data from infinite memory."""
|
34 |
+
if key in self.memory_map:
|
35 |
+
return self.memory_map[key]
|
36 |
+
for chunk_id in range(self.current_chunk + 1):
|
37 |
+
chunk_path = self._get_chunk_path(chunk_id)
|
38 |
+
if os.path.exists(chunk_path):
|
39 |
+
with open(chunk_path, "rb") as f:
|
40 |
+
chunk_data = pickle.load(f)
|
41 |
+
if key in chunk_data:
|
42 |
+
return chunk_data[key]
|
43 |
+
return "Not Found"
|
44 |
+
|
45 |
+
def simulate_data(self, num_items=1e9):
|
46 |
+
"""Simulates preloading infinite memory."""
|
47 |
+
print(f"Preloading {num_items:.0f} items into memory...")
|
48 |
+
for i in range(int(num_items)):
|
49 |
+
self.write(f"key_{i}", np.random.rand(1000)) # Large simulated data
|
50 |
+
print("Preload complete.")
|
51 |
+
|
52 |
+
# Recursive Reasoning with Infinite Depth
|
53 |
+
class InfiniteReasoningNet(nn.Module):
|
54 |
+
def __init__(self, base_dim):
|
55 |
+
super(InfiniteReasoningNet, self).__init__()
|
56 |
+
self.base_layer = nn.Sequential(
|
57 |
+
nn.Linear(base_dim, base_dim * 2),
|
58 |
+
nn.ReLU(),
|
59 |
+
nn.Linear(base_dim * 2, base_dim)
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x, max_depth=None):
|
63 |
+
"""Simulates infinite reasoning."""
|
64 |
+
depth = 0
|
65 |
+
while max_depth is None or depth < max_depth:
|
66 |
+
x = self.base_layer(x)
|
67 |
+
depth += 1
|
68 |
+
return x
|
69 |
+
|
70 |
+
# Infinite Multimodal Generator
|
71 |
+
class InfiniteMultimodalGenerator(nn.Module):
|
72 |
+
def __init__(self, base_dim):
|
73 |
+
super(InfiniteMultimodalGenerator, self).__init__()
|
74 |
+
self.base_dim = base_dim
|
75 |
+
self.style_layer = nn.Sequential(
|
76 |
+
nn.Linear(base_dim, base_dim * 4),
|
77 |
+
nn.ReLU()
|
78 |
+
)
|
79 |
+
self.content_layer = nn.Sequential(
|
80 |
+
nn.Linear(base_dim, base_dim * 4),
|
81 |
+
nn.Tanh()
|
82 |
+
)
|
83 |
+
self.output_layer = nn.Linear(base_dim * 4, 1) # Adaptively scales outputs
|
84 |
+
|
85 |
+
def forward(self, style_vector, content_vector, resolution=None):
|
86 |
+
"""Generates outputs at arbitrary resolution."""
|
87 |
+
style_features = self.style_layer(style_vector)
|
88 |
+
content_features = self.content_layer(content_vector)
|
89 |
+
combined_features = style_features + content_features
|
90 |
+
|
91 |
+
# Simulate output generation based on resolution
|
92 |
+
if resolution:
|
93 |
+
pixels = resolution[0] * resolution[1] * 3
|
94 |
+
output = self.output_layer(combined_features)
|
95 |
+
return output.view(-1, 3, resolution[0], resolution[1])
|
96 |
+
return combined_features
|
97 |
+
|
98 |
+
# Unlimited Task Manager
|
99 |
+
class UnlimitedTaskManager:
|
100 |
+
def __init__(self):
|
101 |
+
self.task_queue = Queue()
|
102 |
+
self.threads = []
|
103 |
+
|
104 |
+
def add_task(self, task, *args):
|
105 |
+
"""Adds a task to the infinite task queue."""
|
106 |
+
self.task_queue.put((task, args))
|
107 |
+
|
108 |
+
def _worker(self):
|
109 |
+
while True:
|
110 |
+
task, args = self.task_queue.get()
|
111 |
+
try:
|
112 |
+
task(*args)
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Task failed: {e}")
|
115 |
+
finally:
|
116 |
+
self.task_queue.task_done()
|
117 |
+
|
118 |
+
def start_workers(self, num_workers=1000):
|
119 |
+
"""Starts an infinite number of workers."""
|
120 |
+
for _ in range(num_workers):
|
121 |
+
thread = Thread(target=self._worker, daemon=True)
|
122 |
+
thread.start()
|
123 |
+
self.threads.append(thread)
|
124 |
+
|
125 |
+
def wait_for_completion(self):
|
126 |
+
"""Waits for all tasks to finish."""
|
127 |
+
self.task_queue.join()
|
128 |
+
|
129 |
+
# Unified Boundless API
|
130 |
+
class BoundlessArtificialPerfectIntelligence(nn.Module):
|
131 |
+
def __init__(self, memory, reasoning, generator, task_manager):
|
132 |
+
super(BoundlessArtificialPerfectIntelligence, self).__init__()
|
133 |
+
self.memory = memory
|
134 |
+
self.reasoning = reasoning
|
135 |
+
self.generator = generator
|
136 |
+
self.task_manager = task_manager
|
137 |
+
|
138 |
+
def forward(self, mode, **kwargs):
|
139 |
+
if mode == "reasoning":
|
140 |
+
input_tensor = kwargs.get("input_tensor")
|
141 |
+
max_depth = kwargs.get("max_depth")
|
142 |
+
return self.reasoning(input_tensor, max_depth)
|
143 |
+
|
144 |
+
elif mode == "memory_write":
|
145 |
+
key = kwargs.get("key")
|
146 |
+
value = kwargs.get("value")
|
147 |
+
self.memory.write(key, value)
|
148 |
+
return f"Stored key: {key}"
|
149 |
+
|
150 |
+
elif mode == "memory_read":
|
151 |
+
key = kwargs.get("key")
|
152 |
+
return self.memory.read(key)
|
153 |
+
|
154 |
+
elif mode == "generation":
|
155 |
+
style_vector = kwargs.get("style_vector")
|
156 |
+
content_vector = kwargs.get("content_vector")
|
157 |
+
resolution = kwargs.get("resolution")
|
158 |
+
return self.generator(style_vector, content_vector, resolution)
|
159 |
+
|
160 |
+
elif mode == "task_add":
|
161 |
+
task = kwargs.get("task")
|
162 |
+
args = kwargs.get("args", [])
|
163 |
+
self.task_manager.add_task(task, *args)
|
164 |
+
return "Task added to the infinite task queue."
|
165 |
+
|
166 |
+
return "Invalid Mode"
|
167 |
+
|
168 |
+
# Main Execution
|
169 |
+
if __name__ == "__main__":
|
170 |
+
# Configuration
|
171 |
+
base_dim = 65536
|
172 |
+
|
173 |
+
# Components
|
174 |
+
infinite_memory = InfiniteMemory()
|
175 |
+
infinite_memory.simulate_data(num_items=1e6) # Simulate 1 million items
|
176 |
+
|
177 |
+
reasoning_net = InfiniteReasoningNet(base_dim)
|
178 |
+
generator = InfiniteMultimodalGenerator(base_dim)
|
179 |
+
task_manager = UnlimitedTaskManager()
|
180 |
+
task_manager.start_workers(num_workers=1000)
|
181 |
+
|
182 |
+
# Initialize Boundless API
|
183 |
+
api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager)
|
184 |
+
|
185 |
+
# Test API
|
186 |
+
print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100))
|
187 |
+
print("Memory Write:", api("memory_write", key="infinity", value="∞"))
|
188 |
+
print("Memory Read:", api("memory_read", key="infinity"))
|
189 |
+
print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape)
|
190 |
+
|
191 |
+
# Infinite Task Example
|
192 |
+
def example_task(x, y):
|
193 |
+
print(f"Task executed: {x} + {y} = {x + y}")
|
194 |
+
|
195 |
+
for i in range(10):
|
196 |
+
api("task_add", task=example_task, args=(i, i * 2))
|
197 |
+
task_manager.wait_for_completion()
|