update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: mdeberta-v3-base-finetuned-recores
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mdeberta-v3-base-finetuned-recores
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6094
|
20 |
+
- Accuracy: 0.2011
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 1
|
41 |
+
- eval_batch_size: 1
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 3000
|
46 |
+
- num_epochs: 25
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
52 |
+
| 1.6112 | 1.0 | 1047 | 1.6094 | 0.1901 |
|
53 |
+
| 1.608 | 2.0 | 2094 | 1.6094 | 0.1873 |
|
54 |
+
| 1.6127 | 3.0 | 3141 | 1.6095 | 0.1983 |
|
55 |
+
| 1.6125 | 4.0 | 4188 | 1.6094 | 0.2424 |
|
56 |
+
| 1.6118 | 5.0 | 5235 | 1.6094 | 0.1956 |
|
57 |
+
| 1.6181 | 6.0 | 6282 | 1.6094 | 0.2094 |
|
58 |
+
| 1.6229 | 7.0 | 7329 | 1.6095 | 0.1680 |
|
59 |
+
| 1.6125 | 8.0 | 8376 | 1.6094 | 0.1736 |
|
60 |
+
| 1.6134 | 9.0 | 9423 | 1.6094 | 0.2066 |
|
61 |
+
| 1.6174 | 10.0 | 10470 | 1.6093 | 0.2204 |
|
62 |
+
| 1.6161 | 11.0 | 11517 | 1.6096 | 0.2121 |
|
63 |
+
| 1.6198 | 12.0 | 12564 | 1.6094 | 0.2039 |
|
64 |
+
| 1.6182 | 13.0 | 13611 | 1.6094 | 0.2287 |
|
65 |
+
| 1.6208 | 14.0 | 14658 | 1.6094 | 0.2287 |
|
66 |
+
| 1.6436 | 15.0 | 15705 | 1.6092 | 0.2287 |
|
67 |
+
| 1.6209 | 16.0 | 16752 | 1.6094 | 0.2094 |
|
68 |
+
| 1.6097 | 17.0 | 17799 | 1.6094 | 0.2094 |
|
69 |
+
| 1.6115 | 18.0 | 18846 | 1.6094 | 0.2149 |
|
70 |
+
| 1.6249 | 19.0 | 19893 | 1.6094 | 0.1956 |
|
71 |
+
| 1.6201 | 20.0 | 20940 | 1.6094 | 0.1763 |
|
72 |
+
| 1.6217 | 21.0 | 21987 | 1.6094 | 0.1956 |
|
73 |
+
| 1.6193 | 22.0 | 23034 | 1.6094 | 0.1846 |
|
74 |
+
| 1.6171 | 23.0 | 24081 | 1.6095 | 0.1983 |
|
75 |
+
| 1.6123 | 24.0 | 25128 | 1.6095 | 0.1846 |
|
76 |
+
| 1.6164 | 25.0 | 26175 | 1.6094 | 0.2011 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.19.0
|
82 |
+
- Pytorch 1.10.1+cu102
|
83 |
+
- Datasets 2.2.1
|
84 |
+
- Tokenizers 0.12.1
|