A common model with 500000 steps
Browse files- README.md +1 -1
- common.zip +3 -0
- common/_stable_baselines3_version +1 -0
- common/data +94 -0
- common/policy.optimizer.pth +3 -0
- common/policy.pth +3 -0
- common/pytorch_variables.pth +3 -0
- common/system_info.txt +7 -0
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 282.41 +/- 18.64
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
common.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cd74d295f5066be458faae95fb0a81e0c2c4e243d01e1679d6275b0cf74f5cc
|
3 |
+
size 143438
|
common/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
common/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f552605bc10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552605bca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552605bd30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552605bdc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f552605be50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f552605bee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552605bf70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f552605e040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552605e0d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552605e160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552605e1f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5526058840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 8,
|
45 |
+
"num_timesteps": 5005312,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652181000.1142917,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAADOjPbulaxk+bpbvvSDvp76ngaW90AR6vQAAAAAAAAAAwBMqviMBmz/73Ne+/vsRvwBaWL423jq+AAAAAAAAAACaGOW9jQL2PmJjDj4kA7y+zROou91aFT0AAAAAAAAAADM1hzxkX7k/FYBGPvrH6T0snAC83jYNPQAAAAAAAAAAWuXTPYYnkj7NyoW+i7rQvtfirb2uD5C9AAAAAAAAAAAAE5A93HOeP7porT4w/hu/kl8bPhItlj4AAAAAAAAAACb41r0zEqc/XtJAvlzYF7/Tx4y9atdQvQAAAAAAAAAAmrc3PScevz/yFYc+L9TqPJxWzzyulro9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh8H8FfIKckCUhpRSlIwBbJRLx4wBdJRHQLEIc4Ajps51fZQoaAZoCWgPQwgUl+MVSI9wQJSGlFKUaBVL3GgWR0CxCKTwQUYbdX2UKGgGaAloD0MIQgddwqFuckCUhpRSlGgVS+xoFkdAsQjI67ulXXV9lChoBmgJaA9DCH3O3a6XDkFAlIaUUpRoFUuMaBZHQLEI19Brvb51fZQoaAZoCWgPQwg7pu7Kbu1yQJSGlFKUaBVL3GgWR0CxCPbZWaMKdX2UKGgGaAloD0MIHERrRZu0cUCUhpRSlGgVS8NoFkdAsQkAJokAxXV9lChoBmgJaA9DCKZ7ndQXq3JAlIaUUpRoFUvPaBZHQLEJBnndO7B1fZQoaAZoCWgPQwhbJy7H63RxQJSGlFKUaBVLw2gWR0CxCQqABkqddX2UKGgGaAloD0MIBmfw9wstc0CUhpRSlGgVS81oFkdAsQkWpfhMrXV9lChoBmgJaA9DCGN8mL3s9HJAlIaUUpRoFUvQaBZHQLEJQqrzXjF1fZQoaAZoCWgPQwjxKQDGM15xQJSGlFKUaBVL0GgWR0CxCXhfrrxBdX2UKGgGaAloD0MI+7K0U7MockCUhpRSlGgVS/9oFkdAsQmVPoFFD3V9lChoBmgJaA9DCGSxTSpaDXFAlIaUUpRoFUvbaBZHQLEJpjEvTPV1fZQoaAZoCWgPQwhzvALR055wQJSGlFKUaBVL2mgWR0CxCa+CGvfTdX2UKGgGaAloD0MIE9bG2MmZcUCUhpRSlGgVS7toFkdAsQmwp9ZzP3V9lChoBmgJaA9DCGXjwRb7GXJAlIaUUpRoFUvkaBZHQLEJvRE4Nqh1fZQoaAZoCWgPQwhF14Uf3EZyQJSGlFKUaBVLz2gWR0CxCfUjxCpndX2UKGgGaAloD0MIq0IDsWzxckCUhpRSlGgVS8poFkdAsQounHeaa3V9lChoBmgJaA9DCLExryMOr3FAlIaUUpRoFUu4aBZHQLEKOZ+x4Y91fZQoaAZoCWgPQwibAMPyJ7RyQJSGlFKUaBVLs2gWR0CxCkYD9wWFdX2UKGgGaAloD0MItOTxtPxickCUhpRSlGgVS8BoFkdAsQpbgQ6IWXV9lChoBmgJaA9DCJ4I4jxcEnFAlIaUUpRoFUvHaBZHQLEKYRArxy51fZQoaAZoCWgPQwgYJH1ahYVyQJSGlFKUaBVL3GgWR0CxCoHKji4sdX2UKGgGaAloD0MIuycPCzWwckCUhpRSlGgVS89oFkdAsQqzqnm7rnV9lChoBmgJaA9DCKOutffpDXBAlIaUUpRoFUvbaBZHQLEMu6Tnq3V1fZQoaAZoCWgPQwhL5e0Ip4lyQJSGlFKUaBVL5mgWR0CxDLv38GcGdX2UKGgGaAloD0MITMYxkv3UcUCUhpRSlGgVS9ZoFkdAsQzGGO+7DnV9lChoBmgJaA9DCK/PnPWp7W9AlIaUUpRoFUvGaBZHQLEM1WIGhVV1fZQoaAZoCWgPQwjekEYFzllxQJSGlFKUaBVL6WgWR0CxDPMA3kxRdX2UKGgGaAloD0MIqTP3kHDPcUCUhpRSlGgVS85oFkdAsQ0FNEgGKXV9lChoBmgJaA9DCN4ehIA8ZXFAlIaUUpRoFUvsaBZHQLENXpcophF1fZQoaAZoCWgPQwiitaLNsYhwQJSGlFKUaBVLv2gWR0CxDYYrrgO0dX2UKGgGaAloD0MI+kffpKn5cECUhpRSlGgVS8BoFkdAsQ2HeQ+2VnV9lChoBmgJaA9DCDgUPlvHn3FAlIaUUpRoFUvKaBZHQLENmbTMJQd1fZQoaAZoCWgPQwhJumbyDadyQJSGlFKUaBVL2WgWR0CxDbba24NJdX2UKGgGaAloD0MI2lazzjiIcUCUhpRSlGgVS7doFkdAsQ3Ei/wiJXV9lChoBmgJaA9DCJ6zBYTWEHFAlIaUUpRoFUvhaBZHQLEN3Xd0q6R1fZQoaAZoCWgPQwjWOJuOQNhxQJSGlFKUaBVLu2gWR0CxDh9bPhQ4dX2UKGgGaAloD0MIEyujkc+jTkCUhpRSlGgVS6xoFkdAsQ40qrilznV9lChoBmgJaA9DCIJxcOkY7mRAlIaUUpRoFU3oA2gWR0CxDnL5mAbydX2UKGgGaAloD0MIzvqUYzLacUCUhpRSlGgVS+ZoFkdAsQ50NFz+33V9lChoBmgJaA9DCIyiBz7GAnBAlIaUUpRoFUvHaBZHQLEOgi2UjcF1fZQoaAZoCWgPQwgplfCE3lFyQJSGlFKUaBVL6mgWR0CxDoaTOgQIdX2UKGgGaAloD0MIz4dnCbJMcUCUhpRSlGgVS8hoFkdAsQ6Ljo6jnHV9lChoBmgJaA9DCEg2V82zKnFAlIaUUpRoFUu3aBZHQLEOj+85CF91fZQoaAZoCWgPQwjDYWngx+duQJSGlFKUaBVLzmgWR0CxDsrS7Xg+dX2UKGgGaAloD0MIrOKNzKOFbkCUhpRSlGgVS9FoFkdAsQ7eYAsCk3V9lChoBmgJaA9DCN4E3zR9A1FAlIaUUpRoFUuwaBZHQLEO8pvxYq51fZQoaAZoCWgPQwimQ6fn3ZdxQJSGlFKUaBVLyGgWR0CxDwURe1KHdX2UKGgGaAloD0MINNk/TwOqcUCUhpRSlGgVS8RoFkdAsQ8c4bS7XnV9lChoBmgJaA9DCAWlaOXeaW9AlIaUUpRoFUvOaBZHQLEPHsJY1YR1fZQoaAZoCWgPQwgeFmpNcx9wQJSGlFKUaBVL32gWR0CxDydV3ljmdX2UKGgGaAloD0MIll8GY8Quc0CUhpRSlGgVS/loFkdAsQ9FhWo3rHV9lChoBmgJaA9DCNbFbTTAUXNAlIaUUpRoFUvKaBZHQLEPYhh6Skl1fZQoaAZoCWgPQwgK3LqbJ3pxQJSGlFKUaBVLxGgWR0CxD4Q176YWdX2UKGgGaAloD0MIElDhCFLHcUCUhpRSlGgVS+JoFkdAsQ+Ho8p1BHV9lChoBmgJaA9DCDemJyyxX3FAlIaUUpRoFUvGaBZHQLEPlvpQk5Z1fZQoaAZoCWgPQwiLh/cc2JNwQJSGlFKUaBVL2WgWR0CxD7zmCAc1dX2UKGgGaAloD0MI0y8Rbx0McUCUhpRSlGgVS+toFkdAsQ/KLehwl3V9lChoBmgJaA9DCMqpnWGqMXJAlIaUUpRoFUv/aBZHQLEP46X0Gu91fZQoaAZoCWgPQwgnMJ3W7RxzQJSGlFKUaBVL4GgWR0CxD/AYDTz/dX2UKGgGaAloD0MIF2ahnVOAb0CUhpRSlGgVS8hoFkdAsQ/7xusLfHV9lChoBmgJaA9DCIm0jT+RN3FAlIaUUpRoFUvTaBZHQLER2pEx7At1fZQoaAZoCWgPQwhfRUYHJJZwQJSGlFKUaBVL42gWR0CxEe349HMEdX2UKGgGaAloD0MIigRTzSyZckCUhpRSlGgVS+toFkdAsRIHsIE8rHV9lChoBmgJaA9DCLlRZK1hvnBAlIaUUpRoFUvLaBZHQLESIsmfGuN1fZQoaAZoCWgPQwhTeqaXmLNxQJSGlFKUaBVL6mgWR0CxEi9/axoqdX2UKGgGaAloD0MITfVk/hGUcUCUhpRSlGgVS95oFkdAsRJOFj/dZnV9lChoBmgJaA9DCGdD/pnBnXFAlIaUUpRoFUv/aBZHQLESflpGnXN1fZQoaAZoCWgPQwgP0egOYvdxQJSGlFKUaBVL+2gWR0CxEorWuoxYdX2UKGgGaAloD0MIwXKEDOQmc0CUhpRSlGgVS+doFkdAsRKoUzsQd3V9lChoBmgJaA9DCCygUE+fiW9AlIaUUpRoFUvdaBZHQLESsW3BpHt1fZQoaAZoCWgPQwg//z14LfdxQJSGlFKUaBVL0WgWR0CxEr6+JxecdX2UKGgGaAloD0MIKlWi7O1PcUCUhpRSlGgVS89oFkdAsRLUOrhisnV9lChoBmgJaA9DCHF2a5nM3XNAlIaUUpRoFUvOaBZHQLES3rSmZVp1fZQoaAZoCWgPQwhLsaNxqEdyQJSGlFKUaBVL6GgWR0CxEw8riEQHdX2UKGgGaAloD0MINV8lHzu7cUCUhpRSlGgVS/FoFkdAsRNA274BWHV9lChoBmgJaA9DCFPMQdCRzHBAlIaUUpRoFUvNaBZHQLETS8jiXIF1fZQoaAZoCWgPQwgz+Wabmw9xQJSGlFKUaBVNDgFoFkdAsRNlprULD3V9lChoBmgJaA9DCIpZL4ZyKHJAlIaUUpRoFUvzaBZHQLETdI5YHPh1fZQoaAZoCWgPQwhqatlan2hzQJSGlFKUaBVL6WgWR0CxE3onndO7dX2UKGgGaAloD0MIvi8uVWk+bkCUhpRSlGgVS9ZoFkdAsROCYiPhh3V9lChoBmgJaA9DCHkEN1J2RnNAlIaUUpRoFUv2aBZHQLEToWfK6nR1fZQoaAZoCWgPQwh5BaInZRtxQJSGlFKUaBVL1GgWR0CxE7aWw/xEdX2UKGgGaAloD0MIILb0aKoOc0CUhpRSlGgVS8BoFkdAsRPRg4Otn3V9lChoBmgJaA9DCI/ecB+5XnNAlIaUUpRoFUvaaBZHQLET7jI7vG91fZQoaAZoCWgPQwhXXByVm9JxQJSGlFKUaBVL0mgWR0CxFAEc4o7WdX2UKGgGaAloD0MInSrfM1LDcECUhpRSlGgVS8NoFkdAsRQD0I1LrXV9lChoBmgJaA9DCLIOR1fpXG5AlIaUUpRoFUvMaBZHQLEUGNSIgvF1fZQoaAZoCWgPQwgYP417M/JwQJSGlFKUaBVL7GgWR0CxFChLoOhCdX2UKGgGaAloD0MIpu1fWWkEdECUhpRSlGgVS9loFkdAsRRD9bX6InV9lChoBmgJaA9DCGQke4Qap29AlIaUUpRoFUvDaBZHQLEUSX9itq51fZQoaAZoCWgPQwgGK061VvdxQJSGlFKUaBVL8GgWR0CxFIrkbPyDdX2UKGgGaAloD0MIo1aYvtcAckCUhpRSlGgVS+JoFkdAsRSiyJKraXV9lChoBmgJaA9DCOCBAYTPynBAlIaUUpRoFUvKaBZHQLEUpAtWdVh1fZQoaAZoCWgPQwiW0F0S51ZzQJSGlFKUaBVNAAFoFkdAsRTOF49ovnV9lChoBmgJaA9DCLe0GhI3GnNAlIaUUpRoFUvaaBZHQLEU2HzpX6t1fZQoaAZoCWgPQwg9uaZAJpByQJSGlFKUaBVL/WgWR0CxFOPU8V59dX2UKGgGaAloD0MImPkOfuKNcUCUhpRSlGgVS8NoFkdAsRTkqWkadnV9lChoBmgJaA9DCC7KbJBJQlRAlIaUUpRoFUvEaBZHQLEU6gVGkN51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2444,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
common/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34d89acad246e1b8856740bc272ce922698704e8d449ff98917aed2048e61f29
|
3 |
+
size 84637
|
common/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7abc70050a0a04d1fa05f4491c2cbe26ba4f24c506236dc9d14b62758e1a8411
|
3 |
+
size 43073
|
common/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
common/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.29 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84b4ff8c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84b4ff8ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84b4ff8d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84b4ff8dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f84b4ff8e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f84b4ff8ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84b4ff8f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f84b4ffc040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84b4ffc0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84b4ffc160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84b4ffc1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f84b4ff5840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652178920.8024821, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAKY+Mr5Sa4e7y3p9uvymsLcMRv08W+6TOQAAgD8AAIA/rbeFPrHNij/6Z5Q+IMhuvrFDCT4Da/Q9AAAAAAAAAABTazw+4ZqoORWy0ru/QIq4IlE5POq3Z7kAAIA/AACAP21bEb7I7u47a9eFPIePB7sqsoy9W0z7OwAAgD8AAIA/AHS5PMMhWbqx9CG7D/mLNml+6LmIeTg6AACAPwAAgD9tR2G+0peVu3L4MDusOYQ4MinmPOr1GLkAAIA/AACAP9r4zz3DCWK6s0g+OsB5NDWf3iy5M8RfuQAAgD8AAIA/lVnjvihWurwUKbk691CFuAXMhr3V1Ou5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/RAbLJz7W0CUhpRSlIwBbJRN6AOMAXSUR0B7bOB3A2ycdX2UKGgGaAloD0MIdQRws3jRCECUhpRSlGgVTQcBaBZHQHuP/I4lyBF1fZQoaAZoCWgPQwgoYDsYsc/pP5SGlFKUaBVNAAFoFkdAe6MU+cH4XXV9lChoBmgJaA9DCNtMhXgk91dAlIaUUpRoFU3oA2gWR0B7vI+0PYnOdX2UKGgGaAloD0MIrWwf8paLZECUhpRSlGgVTegDaBZHQHu+CWzF+/h1fZQoaAZoCWgPQwiOImsNpSxjQJSGlFKUaBVN6ANoFkdAe9bcOskpqnV9lChoBmgJaA9DCBTq6SPwGFxAlIaUUpRoFU3oA2gWR0B72vn2ZiNLdX2UKGgGaAloD0MI+MH51LG0XECUhpRSlGgVTegDaBZHQHvbOaF23a11fZQoaAZoCWgPQwjKarqe6HBfQJSGlFKUaBVN6ANoFkdAe9uYB/7SA3V9lChoBmgJaA9DCOMbCp+tHz7AlIaUUpRoFU0ZAWgWR0B74FhKDkELdX2UKGgGaAloD0MIofKv5ZVDQsCUhpRSlGgVTRcBaBZHQHv99wWFev91fZQoaAZoCWgPQwjBGmfTEWQ6QJSGlFKUaBVL6GgWR0B7/qPGQ0XQdX2UKGgGaAloD0MIjPSidr8EYUCUhpRSlGgVTegDaBZHQHw2s9wFTvR1fZQoaAZoCWgPQwgrMGR1q19JQJSGlFKUaBVN6ANoFkdAfDpinHeaa3V9lChoBmgJaA9DCHJO7KF93DJAlIaUUpRoFU3oA2gWR0B8VJXfZVXFdX2UKGgGaAloD0MIL204LA04W0CUhpRSlGgVTegDaBZHQHx16VpsXSB1fZQoaAZoCWgPQwifkQiNYGZZQJSGlFKUaBVN6ANoFkdAfHvXRPXTVnV9lChoBmgJaA9DCBKj5xa6rFdAlIaUUpRoFU3oA2gWR0B8fGimEXchdX2UKGgGaAloD0MIPZrqyfwDY0CUhpRSlGgVTegDaBZHQHysabvw3Hd1fZQoaAZoCWgPQwirzf+rju9ZQJSGlFKUaBVN6ANoFkdAfK0uLaVUuXV9lChoBmgJaA9DCPFG5pE/tmdAlIaUUpRoFU0EAmgWR0B81OLGaQV9dX2UKGgGaAloD0MIEW+dfztxYECUhpRSlGgVTegDaBZHQHzvlU6xPft1fZQoaAZoCWgPQwh/iA0WTgpJQJSGlFKUaBVN6ANoFkdAfPTObAk9lnV9lChoBmgJaA9DCBKlvcEXWlFAlIaUUpRoFU3oA2gWR0B9Lwqqfe1sdX2UKGgGaAloD0MIk45yMJuoJMCUhpRSlGgVS+5oFkdAfT9OfNA1N3V9lChoBmgJaA9DCMy4qYHmS2FAlIaUUpRoFU3oA2gWR0B9Yrv+fh/BdX2UKGgGaAloD0MIeeqRBrdcWUCUhpRSlGgVTegDaBZHQH1jerU9ZA91fZQoaAZoCWgPQwhuFcRA19JEwJSGlFKUaBVNJQFoFkdAfX5Uu+RHPXV9lChoBmgJaA9DCMLbgxCQ0lNAlIaUUpRoFU3oA2gWR0B9mt0MgEEDdX2UKGgGaAloD0MI9UwvMZYaUkCUhpRSlGgVTegDaBZHQH2bsSf16E91fZQoaAZoCWgPQwhmiGNd3BxNwJSGlFKUaBVNLgFoFkdAfZ+nLJSzgXV9lChoBmgJaA9DCGpq2VpfcDHAlIaUUpRoFU1IAWgWR0B9o3H0btJGdX2UKGgGaAloD0MIH6LRHcRuXkCUhpRSlGgVTegDaBZHQH27Vq33HrB1fZQoaAZoCWgPQwgXDRmPUjFNwJSGlFKUaBVNIAFoFkdAfcw4Uvf0mXV9lChoBmgJaA9DCKwfm+THKmNAlIaUUpRoFU3oA2gWR0B90GCQLeANdX2UKGgGaAloD0MIQMIwYMllOsCUhpRSlGgVTSABaBZHQH3RFp0wJw91fZQoaAZoCWgPQwhDy7p/LIwhQJSGlFKUaBVNSAFoFkdAfdunp0OmSHV9lChoBmgJaA9DCFyPwvUot2PAlIaUUpRoFU3uAWgWR0B974S00FbFdX2UKGgGaAloD0MIs14M5US/YECUhpRSlGgVTegDaBZHQH3wtnPE87p1fZQoaAZoCWgPQwjzVIfcDB8twJSGlFKUaBVNbwFoFkdAfg5/pt78enV9lChoBmgJaA9DCCQPRBZpkjPAlIaUUpRoFU02AWgWR0B+N0MVk+X7dX2UKGgGaAloD0MIe9tMhXgpXUCUhpRSlGgVTegDaBZHQH5F0G/vfCR1fZQoaAZoCWgPQwh39wDdlydKQJSGlFKUaBVN6ANoFkdAfpR20AtFrnV9lChoBmgJaA9DCM3lBkMd6F9AlIaUUpRoFU3oA2gWR0B+qM2OyVv/dX2UKGgGaAloD0MIzLT9KyseYUCUhpRSlGgVTegDaBZHQH6plGgBcRl1fZQoaAZoCWgPQwhPlIRE2sdhQJSGlFKUaBVN6ANoFkdAfrMlWOp84XV9lChoBmgJaA9DCPT7/s2LMmRAlIaUUpRoFU3oA2gWR0B+0+fTTfBOdX2UKGgGaAloD0MIUps4ud8pXsCUhpRSlGgVTU4DaBZHQH7s0dV/+bV1fZQoaAZoCWgPQwi2heelYmBgQJSGlFKUaBVN6ANoFkdAfu0r1dxAB3V9lChoBmgJaA9DCLPuHwvRFU3AlIaUUpRoFU1uAWgWR0B/Cha4c3l0dX2UKGgGaAloD0MIfPMbJhpqU0CUhpRSlGgVTegDaBZHQH8K0ExIre91fZQoaAZoCWgPQwhYHM786hZlQJSGlFKUaBVN3QFoFkdAfzdcKgIyCXV9lChoBmgJaA9DCB9Hc2TlNV9AlIaUUpRoFU3oA2gWR0B/RDzErGzbdX2UKGgGaAloD0MIoImw4empZECUhpRSlGgVTegDaBZHQH9Wt0NjLB91fZQoaAZoCWgPQwhvZYnOMpdVQJSGlFKUaBVN6ANoFkdAf1di35N47nV9lChoBmgJaA9DCI/gRsoWolFAlIaUUpRoFU3oA2gWR0B/YTK+zt1IdX2UKGgGaAloD0MIsg+yLJgkPsCUhpRSlGgVTS4BaBZHQH91tQTEit91fZQoaAZoCWgPQwhOs0C7QxdQQJSGlFKUaBVN6ANoFkdAf5B90zTF2nV9lChoBmgJaA9DCLPTD+oi/lFAlIaUUpRoFU3oA2gWR0B/utwT/Q0GdX2UKGgGaAloD0MI5jv4iQNqW0CUhpRSlGgVTegDaBZHQH+76+evpyJ1fZQoaAZoCWgPQwhTW+ogL9ZgQJSGlFKUaBVN6ANoFkdAf+8420iQk3V9lChoBmgJaA9DCBFUjV4NHl9AlIaUUpRoFU3oA2gWR0CACVLIPsiTdX2UKGgGaAloD0MIvHZpw2F4YkCUhpRSlGgVTegDaBZHQIAJsMiKR+11fZQoaAZoCWgPQwiILNLEO9NRQJSGlFKUaBVN6ANoFkdAgA7Ks2eg+XV9lChoBmgJaA9DCHTtC+iFI1NAlIaUUpRoFU3oA2gWR0CAIuxFAmiQdX2UKGgGaAloD0MIFyzVBbw3XECUhpRSlGgVTegDaBZHQIAwslC1JDp1fZQoaAZoCWgPQwiW0F0SZ0E2wJSGlFKUaBVNeAFoFkdAgDOIv8IiT3V9lChoBmgJaA9DCDKqDONu0FjAlIaUUpRoFU28AWgWR0CAOjL7GecydX2UKGgGaAloD0MIDVGFP8OWV0CUhpRSlGgVTegDaBZHQIBCjWNFSbZ1fZQoaAZoCWgPQwizCTAs/xVgQJSGlFKUaBVN6ANoFkdAgELzFdcB2nV9lChoBmgJaA9DCEq4kEdwTzLAlIaUUpRoFU1JAWgWR0CAVRiQ1aW5dX2UKGgGaAloD0MIzvxqDpAGYECUhpRSlGgVTegDaBZHQIBaZwl0HQh1fZQoaAZoCWgPQwilLa7xmfZcQJSGlFKUaBVNYwNoFkdAgGf8UmD15HV9lChoBmgJaA9DCGtKsg5HQFdAlIaUUpRoFU3oA2gWR0CAjSwfQrtmdX2UKGgGaAloD0MI/U/+7h2BOsCUhpRSlGgVTZUBaBZHQICjUVeruIB1fZQoaAZoCWgPQwhhp1g1CDVaQJSGlFKUaBVN6ANoFkdAgKRTH80k4XV9lChoBmgJaA9DCE91yM1wJFdAlIaUUpRoFU3oA2gWR0CAqHR6Ww/xdX2UKGgGaAloD0MIOPWB5J0lVUCUhpRSlGgVTegDaBZHQIC8UvboKUp1fZQoaAZoCWgPQwizQpHu5yVTQJSGlFKUaBVN6ANoFkdAgLzPVNHpbHV9lChoBmgJaA9DCK1oc5zbPmBAlIaUUpRoFU3oA2gWR0CAzuHIIWxhdX2UKGgGaAloD0MIDqFKzZ4GYUCUhpRSlGgVTegDaBZHQIDTOFzuF6B1fZQoaAZoCWgPQwiJCP8i6GBpQJSGlFKUaBVNGwJoFkdAgNhaol2NenV9lChoBmgJaA9DCCdnKO54119AlIaUUpRoFU3oA2gWR0CA+sFFDv3KdX2UKGgGaAloD0MIYwys43h8YUCUhpRSlGgVTegDaBZHQIEW1E/jbSJ1fZQoaAZoCWgPQwjrH0QyZDhhQJSGlFKUaBVN6ANoFkdAgRqRMFlkH3V9lChoBmgJaA9DCJuQ1hh0UV5AlIaUUpRoFU3oA2gWR0CBKVle4TbndX2UKGgGaAloD0MInzpWKT1TV0CUhpRSlGgVTegDaBZHQIEpv3g1m8N1fZQoaAZoCWgPQwgVysLX1z9aQJSGlFKUaBVN6ANoFkdAgTzRZEDyOXV9lChoBmgJaA9DCCO+E7Ne+lNAlIaUUpRoFU3oA2gWR0CBQVpY9xIbdX2UKGgGaAloD0MIbM7BM6EWX0CUhpRSlGgVTegDaBZHQIFHDbg0j1R1fZQoaAZoCWgPQwgG2h1SDFJZQJSGlFKUaBVN6ANoFkdAgWVxMN+b3HV9lChoBmgJaA9DCN4CCYofQVpAlIaUUpRoFU3oA2gWR0CBdk4hllK9dX2UKGgGaAloD0MIaDwRxHm0VUCUhpRSlGgVTegDaBZHQIF6aCL/CIl1fZQoaAZoCWgPQwg/4IEBhHdZQJSGlFKUaBVN6ANoFkdAgYsCjL0SRXV9lChoBmgJaA9DCHpvDAHARlxAlIaUUpRoFU3oA2gWR0CBi3a9sabXdX2UKGgGaAloD0MIaXOc24SOVkCUhpRSlGgVTegDaBZHQIGfnf4yoGZ1fZQoaAZoCWgPQwinID8bue7wP5SGlFKUaBVNCgFoFkdAgaMDbrTpgXV9lChoBmgJaA9DCED5u3dUMGBAlIaUUpRoFU3oA2gWR0CBo+hqTKT0dX2UKGgGaAloD0MIqUwxB0GvVkCUhpRSlGgVTegDaBZHQIGo+1twaR91fZQoaAZoCWgPQwikVMITer5eQJSGlFKUaBVN6ANoFkdAgciDF6zE8HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.29 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f552605bc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552605bca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552605bd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552605bdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f552605be50>", "forward": "<function ActorCriticPolicy.forward at 0x7f552605bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552605bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f552605e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552605e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552605e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552605e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5526058840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 5005312, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652181000.1142917, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAADOjPbulaxk+bpbvvSDvp76ngaW90AR6vQAAAAAAAAAAwBMqviMBmz/73Ne+/vsRvwBaWL423jq+AAAAAAAAAACaGOW9jQL2PmJjDj4kA7y+zROou91aFT0AAAAAAAAAADM1hzxkX7k/FYBGPvrH6T0snAC83jYNPQAAAAAAAAAAWuXTPYYnkj7NyoW+i7rQvtfirb2uD5C9AAAAAAAAAAAAE5A93HOeP7porT4w/hu/kl8bPhItlj4AAAAAAAAAACb41r0zEqc/XtJAvlzYF7/Tx4y9atdQvQAAAAAAAAAAmrc3PScevz/yFYc+L9TqPJxWzzyulro9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh8H8FfIKckCUhpRSlIwBbJRLx4wBdJRHQLEIc4Ajps51fZQoaAZoCWgPQwgUl+MVSI9wQJSGlFKUaBVL3GgWR0CxCKTwQUYbdX2UKGgGaAloD0MIQgddwqFuckCUhpRSlGgVS+xoFkdAsQjI67ulXXV9lChoBmgJaA9DCH3O3a6XDkFAlIaUUpRoFUuMaBZHQLEI19Brvb51fZQoaAZoCWgPQwg7pu7Kbu1yQJSGlFKUaBVL3GgWR0CxCPbZWaMKdX2UKGgGaAloD0MIHERrRZu0cUCUhpRSlGgVS8NoFkdAsQkAJokAxXV9lChoBmgJaA9DCKZ7ndQXq3JAlIaUUpRoFUvPaBZHQLEJBnndO7B1fZQoaAZoCWgPQwhbJy7H63RxQJSGlFKUaBVLw2gWR0CxCQqABkqddX2UKGgGaAloD0MIBmfw9wstc0CUhpRSlGgVS81oFkdAsQkWpfhMrXV9lChoBmgJaA9DCGN8mL3s9HJAlIaUUpRoFUvQaBZHQLEJQqrzXjF1fZQoaAZoCWgPQwjxKQDGM15xQJSGlFKUaBVL0GgWR0CxCXhfrrxBdX2UKGgGaAloD0MI+7K0U7MockCUhpRSlGgVS/9oFkdAsQmVPoFFD3V9lChoBmgJaA9DCGSxTSpaDXFAlIaUUpRoFUvbaBZHQLEJpjEvTPV1fZQoaAZoCWgPQwhzvALR055wQJSGlFKUaBVL2mgWR0CxCa+CGvfTdX2UKGgGaAloD0MIE9bG2MmZcUCUhpRSlGgVS7toFkdAsQmwp9ZzP3V9lChoBmgJaA9DCGXjwRb7GXJAlIaUUpRoFUvkaBZHQLEJvRE4Nqh1fZQoaAZoCWgPQwhF14Uf3EZyQJSGlFKUaBVLz2gWR0CxCfUjxCpndX2UKGgGaAloD0MIq0IDsWzxckCUhpRSlGgVS8poFkdAsQounHeaa3V9lChoBmgJaA9DCLExryMOr3FAlIaUUpRoFUu4aBZHQLEKOZ+x4Y91fZQoaAZoCWgPQwibAMPyJ7RyQJSGlFKUaBVLs2gWR0CxCkYD9wWFdX2UKGgGaAloD0MItOTxtPxickCUhpRSlGgVS8BoFkdAsQpbgQ6IWXV9lChoBmgJaA9DCJ4I4jxcEnFAlIaUUpRoFUvHaBZHQLEKYRArxy51fZQoaAZoCWgPQwgYJH1ahYVyQJSGlFKUaBVL3GgWR0CxCoHKji4sdX2UKGgGaAloD0MIuycPCzWwckCUhpRSlGgVS89oFkdAsQqzqnm7rnV9lChoBmgJaA9DCKOutffpDXBAlIaUUpRoFUvbaBZHQLEMu6Tnq3V1fZQoaAZoCWgPQwhL5e0Ip4lyQJSGlFKUaBVL5mgWR0CxDLv38GcGdX2UKGgGaAloD0MITMYxkv3UcUCUhpRSlGgVS9ZoFkdAsQzGGO+7DnV9lChoBmgJaA9DCK/PnPWp7W9AlIaUUpRoFUvGaBZHQLEM1WIGhVV1fZQoaAZoCWgPQwjekEYFzllxQJSGlFKUaBVL6WgWR0CxDPMA3kxRdX2UKGgGaAloD0MIqTP3kHDPcUCUhpRSlGgVS85oFkdAsQ0FNEgGKXV9lChoBmgJaA9DCN4ehIA8ZXFAlIaUUpRoFUvsaBZHQLENXpcophF1fZQoaAZoCWgPQwiitaLNsYhwQJSGlFKUaBVLv2gWR0CxDYYrrgO0dX2UKGgGaAloD0MI+kffpKn5cECUhpRSlGgVS8BoFkdAsQ2HeQ+2VnV9lChoBmgJaA9DCDgUPlvHn3FAlIaUUpRoFUvKaBZHQLENmbTMJQd1fZQoaAZoCWgPQwhJumbyDadyQJSGlFKUaBVL2WgWR0CxDbba24NJdX2UKGgGaAloD0MI2lazzjiIcUCUhpRSlGgVS7doFkdAsQ3Ei/wiJXV9lChoBmgJaA9DCJ6zBYTWEHFAlIaUUpRoFUvhaBZHQLEN3Xd0q6R1fZQoaAZoCWgPQwjWOJuOQNhxQJSGlFKUaBVLu2gWR0CxDh9bPhQ4dX2UKGgGaAloD0MIEyujkc+jTkCUhpRSlGgVS6xoFkdAsQ40qrilznV9lChoBmgJaA9DCIJxcOkY7mRAlIaUUpRoFU3oA2gWR0CxDnL5mAbydX2UKGgGaAloD0MIzvqUYzLacUCUhpRSlGgVS+ZoFkdAsQ50NFz+33V9lChoBmgJaA9DCIyiBz7GAnBAlIaUUpRoFUvHaBZHQLEOgi2UjcF1fZQoaAZoCWgPQwgplfCE3lFyQJSGlFKUaBVL6mgWR0CxDoaTOgQIdX2UKGgGaAloD0MIz4dnCbJMcUCUhpRSlGgVS8hoFkdAsQ6Ljo6jnHV9lChoBmgJaA9DCEg2V82zKnFAlIaUUpRoFUu3aBZHQLEOj+85CF91fZQoaAZoCWgPQwjDYWngx+duQJSGlFKUaBVLzmgWR0CxDsrS7Xg+dX2UKGgGaAloD0MIrOKNzKOFbkCUhpRSlGgVS9FoFkdAsQ7eYAsCk3V9lChoBmgJaA9DCN4E3zR9A1FAlIaUUpRoFUuwaBZHQLEO8pvxYq51fZQoaAZoCWgPQwimQ6fn3ZdxQJSGlFKUaBVLyGgWR0CxDwURe1KHdX2UKGgGaAloD0MINNk/TwOqcUCUhpRSlGgVS8RoFkdAsQ8c4bS7XnV9lChoBmgJaA9DCAWlaOXeaW9AlIaUUpRoFUvOaBZHQLEPHsJY1YR1fZQoaAZoCWgPQwgeFmpNcx9wQJSGlFKUaBVL32gWR0CxDydV3ljmdX2UKGgGaAloD0MIll8GY8Quc0CUhpRSlGgVS/loFkdAsQ9FhWo3rHV9lChoBmgJaA9DCNbFbTTAUXNAlIaUUpRoFUvKaBZHQLEPYhh6Skl1fZQoaAZoCWgPQwgK3LqbJ3pxQJSGlFKUaBVLxGgWR0CxD4Q176YWdX2UKGgGaAloD0MIElDhCFLHcUCUhpRSlGgVS+JoFkdAsQ+Ho8p1BHV9lChoBmgJaA9DCDemJyyxX3FAlIaUUpRoFUvGaBZHQLEPlvpQk5Z1fZQoaAZoCWgPQwiLh/cc2JNwQJSGlFKUaBVL2WgWR0CxD7zmCAc1dX2UKGgGaAloD0MI0y8Rbx0McUCUhpRSlGgVS+toFkdAsQ/KLehwl3V9lChoBmgJaA9DCMqpnWGqMXJAlIaUUpRoFUv/aBZHQLEP46X0Gu91fZQoaAZoCWgPQwgnMJ3W7RxzQJSGlFKUaBVL4GgWR0CxD/AYDTz/dX2UKGgGaAloD0MIF2ahnVOAb0CUhpRSlGgVS8hoFkdAsQ/7xusLfHV9lChoBmgJaA9DCIm0jT+RN3FAlIaUUpRoFUvTaBZHQLER2pEx7At1fZQoaAZoCWgPQwhfRUYHJJZwQJSGlFKUaBVL42gWR0CxEe349HMEdX2UKGgGaAloD0MIigRTzSyZckCUhpRSlGgVS+toFkdAsRIHsIE8rHV9lChoBmgJaA9DCLlRZK1hvnBAlIaUUpRoFUvLaBZHQLESIsmfGuN1fZQoaAZoCWgPQwhTeqaXmLNxQJSGlFKUaBVL6mgWR0CxEi9/axoqdX2UKGgGaAloD0MITfVk/hGUcUCUhpRSlGgVS95oFkdAsRJOFj/dZnV9lChoBmgJaA9DCGdD/pnBnXFAlIaUUpRoFUv/aBZHQLESflpGnXN1fZQoaAZoCWgPQwgP0egOYvdxQJSGlFKUaBVL+2gWR0CxEorWuoxYdX2UKGgGaAloD0MIwXKEDOQmc0CUhpRSlGgVS+doFkdAsRKoUzsQd3V9lChoBmgJaA9DCCygUE+fiW9AlIaUUpRoFUvdaBZHQLESsW3BpHt1fZQoaAZoCWgPQwg//z14LfdxQJSGlFKUaBVL0WgWR0CxEr6+JxecdX2UKGgGaAloD0MIKlWi7O1PcUCUhpRSlGgVS89oFkdAsRLUOrhisnV9lChoBmgJaA9DCHF2a5nM3XNAlIaUUpRoFUvOaBZHQLES3rSmZVp1fZQoaAZoCWgPQwhLsaNxqEdyQJSGlFKUaBVL6GgWR0CxEw8riEQHdX2UKGgGaAloD0MINV8lHzu7cUCUhpRSlGgVS/FoFkdAsRNA274BWHV9lChoBmgJaA9DCFPMQdCRzHBAlIaUUpRoFUvNaBZHQLETS8jiXIF1fZQoaAZoCWgPQwgz+Wabmw9xQJSGlFKUaBVNDgFoFkdAsRNlprULD3V9lChoBmgJaA9DCIpZL4ZyKHJAlIaUUpRoFUvzaBZHQLETdI5YHPh1fZQoaAZoCWgPQwhqatlan2hzQJSGlFKUaBVL6WgWR0CxE3onndO7dX2UKGgGaAloD0MIvi8uVWk+bkCUhpRSlGgVS9ZoFkdAsROCYiPhh3V9lChoBmgJaA9DCHkEN1J2RnNAlIaUUpRoFUv2aBZHQLEToWfK6nR1fZQoaAZoCWgPQwh5BaInZRtxQJSGlFKUaBVL1GgWR0CxE7aWw/xEdX2UKGgGaAloD0MIILb0aKoOc0CUhpRSlGgVS8BoFkdAsRPRg4Otn3V9lChoBmgJaA9DCI/ecB+5XnNAlIaUUpRoFUvaaBZHQLET7jI7vG91fZQoaAZoCWgPQwhXXByVm9JxQJSGlFKUaBVL0mgWR0CxFAEc4o7WdX2UKGgGaAloD0MInSrfM1LDcECUhpRSlGgVS8NoFkdAsRQD0I1LrXV9lChoBmgJaA9DCLIOR1fpXG5AlIaUUpRoFUvMaBZHQLEUGNSIgvF1fZQoaAZoCWgPQwgYP417M/JwQJSGlFKUaBVL7GgWR0CxFChLoOhCdX2UKGgGaAloD0MIpu1fWWkEdECUhpRSlGgVS9loFkdAsRRD9bX6InV9lChoBmgJaA9DCGQke4Qap29AlIaUUpRoFUvDaBZHQLEUSX9itq51fZQoaAZoCWgPQwgGK061VvdxQJSGlFKUaBVL8GgWR0CxFIrkbPyDdX2UKGgGaAloD0MIo1aYvtcAckCUhpRSlGgVS+JoFkdAsRSiyJKraXV9lChoBmgJaA9DCOCBAYTPynBAlIaUUpRoFUvKaBZHQLEUpAtWdVh1fZQoaAZoCWgPQwiW0F0S51ZzQJSGlFKUaBVNAAFoFkdAsRTOF49ovnV9lChoBmgJaA9DCLe0GhI3GnNAlIaUUpRoFUvaaBZHQLEU2HzpX6t1fZQoaAZoCWgPQwg9uaZAJpByQJSGlFKUaBVL/WgWR0CxFOPU8V59dX2UKGgGaAloD0MImPkOfuKNcUCUhpRSlGgVS8NoFkdAsRTkqWkadnV9lChoBmgJaA9DCC7KbJBJQlRAlIaUUpRoFUvEaBZHQLEU6gVGkN51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.29 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96c3951279556fc451928cfbe66ce7996b098f877cfb7398610627d8b0de8433
|
3 |
+
size 200547
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.41257126189214, "std_reward": 18.639584793511325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T15:10:22.857921"}
|