My very first model
Browse files- .gitattributes +1 -0
- README.md +19 -1
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- test.zip +3 -0
- test/_stable_baselines3_version +1 -0
- test/data +94 -0
- test/policy.optimizer.pth +3 -0
- test/policy.pth +3 -0
- test/pytorch_variables.pth +3 -0
- test/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -298.76 +/- 94.36
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
---
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb1dc2e0c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb1dc2e0ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb1dc2e0d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb1dc2e0dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fb1dc2e0e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fb1dc2e0ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb1dc2e0f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb1dc2e3040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb1dc2e30d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb1dc2e3160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb1dc2e31f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb1dc2dd840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 53248, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652177226.45135, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAANr89T30nIM/4qh/PjttD7/dZz0+DuiZPQAAAAAAAAAAGvE8Payaqzxtd+49uT9iv0iZN73gWIs8AAAAAAAAAAAAXES84te4PzJnmb4SJ6g+IK92PP0BdD0AAAAAAAAAAPN4Ar7v5EE+ntW+vuc+bL9Ji3o+4fEhPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5BBxcyqhV8CUhpRSlIwBbJRLcowBdJRHQD6lf9gnc+J1fZQoaAZoCWgPQwiYolwavz5cwJSGlFKUaBVLR2gWR0A+sjpcHGCJdX2UKGgGaAloD0MIZW1TPC5yXcCUhpRSlGgVS01oFkdAPrcmKIi1RnV9lChoBmgJaA9DCKJCdXPx0UfAlIaUUpRoFUtqaBZHQD7HP9kz41x1fZQoaAZoCWgPQwjsL7snD/JbwJSGlFKUaBVLZGgWR0A+y8tf5ULldX2UKGgGaAloD0MISpf+JakQX8CUhpRSlGgVS2ZoFkdAPtmC2+fyw3V9lChoBmgJaA9DCKdZoN0hIFbAlIaUUpRoFUtlaBZHQD7d//echDB1fZQoaAZoCWgPQwhvu9Bcp05RwJSGlFKUaBVLTGgWR0A+58x9G7SRdX2UKGgGaAloD0MIg4k/ijr3VsCUhpRSlGgVS1doFkdAPvpMpPRAr3V9lChoBmgJaA9DCAINNnUe7FfAlIaUUpRoFUuMaBZHQD78hLXcxj91fZQoaAZoCWgPQwijBP2FHmFjwJSGlFKUaBVLY2gWR0A/A3lCCz1LdX2UKGgGaAloD0MIfuIA+n1cXMCUhpRSlGgVS3hoFkdAPxVB+nZTQ3V9lChoBmgJaA9DCMyWrIpwUljAlIaUUpRoFUtVaBZHQD8aNcW0qpd1fZQoaAZoCWgPQwgMXB5rRuxawJSGlFKUaBVLYmgWR0A/J/LkjopydX2UKGgGaAloD0MIqmIq/QQCYcCUhpRSlGgVS4RoFkdAPy35rP+n63V9lChoBmgJaA9DCFxaDYl7uVXAlIaUUpRoFUtmaBZHQD87dGiHqNZ1fZQoaAZoCWgPQwgyxofZy2NUwJSGlFKUaBVLZWgWR0A/P+evpyIYdX2UKGgGaAloD0MI2nHD76ZrTsCUhpRSlGgVS0doFkdAP0gevIOpbXV9lChoBmgJaA9DCAaE1sMX9WDAlIaUUpRoFUthaBZHQD9MgZCOWB11fZQoaAZoCWgPQwg6W0BoPfdawJSGlFKUaBVLZmgWR0A/Yp1zQu27dX2UKGgGaAloD0MIlgfpKXJ8SsCUhpRSlGgVS0doFkdAQDeNxVAAyXV9lChoBmgJaA9DCHhha7bysEfAlIaUUpRoFUtraBZHQEA4s90Rvm51fZQoaAZoCWgPQwiZDMfzGSA9wJSGlFKUaBVLemgWR0BAQMIeHSF5dX2UKGgGaAloD0MIQZ/Ik6QkXsCUhpRSlGgVS2poFkdAQEyylenhsXV9lChoBmgJaA9DCCKKyRtgLkzAlIaUUpRoFUtcaBZHQEBNdeIEbHZ1fZQoaAZoCWgPQwjRr62f/hNNwJSGlFKUaBVLaGgWR0BAT0OmR/3GdX2UKGgGaAloD0MIKJ1IMNUNUcCUhpRSlGgVS3JoFkdAQFmeYlY2bXV9lChoBmgJaA9DCH4eozzz9EvAlIaUUpRoFUtaaBZHQEBieGwiaAp1fZQoaAZoCWgPQwhk6xnCMYNVwJSGlFKUaBVLgGgWR0BAaJcPe54GdX2UKGgGaAloD0MIK08g7BQjO8CUhpRSlGgVS0VoFkdAQGlMTN+so3V9lChoBmgJaA9DCB1xyAbSP0vAlIaUUpRoFUuHaBZHQEBqzZ6D5CZ1fZQoaAZoCWgPQwiIRncQO55YwJSGlFKUaBVLVmgWR0BAfAckt29tdX2UKGgGaAloD0MI+bziqUcqQ8CUhpRSlGgVS4NoFkdAQH4RRMvh63V9lChoBmgJaA9DCMIXJlOF02HAlIaUUpRoFUtsaBZHQEB/h3qzJIV1fZQoaAZoCWgPQwiInSl0Xl5UwJSGlFKUaBVLgGgWR0BAgvm5lOGkdX2UKGgGaAloD0MIol9bP/0RUsCUhpRSlGgVS1BoFkdAQIwy2x6fJ3V9lChoBmgJaA9DCLITXoJTT1HAlIaUUpRoFUtOaBZHQECNpSrHU+d1fZQoaAZoCWgPQwhcrROX41ExQJSGlFKUaBVLRWgWR0BAkJL26ClKdX2UKGgGaAloD0MI8pTVdD0lUcCUhpRSlGgVS2loFkdAQJQwsXizcHV9lChoBmgJaA9DCBDPEmQEOFfAlIaUUpRoFUtdaBZHQECjYZl4C6p1fZQoaAZoCWgPQwhYyFwZVDNKwJSGlFKUaBVLU2gWR0BApXjdYW+HdX2UKGgGaAloD0MIk3GMZI/nWMCUhpRSlGgVS4BoFkdAQKgIKMNtqHV9lChoBmgJaA9DCO9v0F59D1HAlIaUUpRoFUuRaBZHQECqTfR/mT11fZQoaAZoCWgPQwi139qJkqZSwJSGlFKUaBVLTWgWR0BAuZvDP4VRdX2UKGgGaAloD0MIqUwxB0E7PcCUhpRSlGgVS2BoFkdAQLuAEt/WlXV9lChoBmgJaA9DCC4cCMkC/lPAlIaUUpRoFUtwaBZHQEC8fT1CgK51fZQoaAZoCWgPQwhqF9NM93RvwJSGlFKUaBVLhWgWR0BAvtnGsFMadX2UKGgGaAloD0MIF0flJmo7VcCUhpRSlGgVS0xoFkdAQMnzBhx5s3V9lChoBmgJaA9DCBalhGBVP1fAlIaUUpRoFUtJaBZHQEDM6Ymb9ZR1fZQoaAZoCWgPQwjNH9PaNCRLwJSGlFKUaBVLWWgWR0BAzcophF3IdX2UKGgGaAloD0MIo5V7gVmhxD+UhpRSlGgVS2poFkdAQM6hFmWdE3V9lChoBmgJaA9DCGxB740hnEjAlIaUUpRoFUtOaBZHQEDYaAFxGUh1fZQoaAZoCWgPQwiAuKtXkf1OwJSGlFKUaBVLQ2gWR0BA2nKGL1mKdX2UKGgGaAloD0MIXoQpyqUZTsCUhpRSlGgVS25oFkdAQOHeUILPU3V9lChoBmgJaA9DCNDU6xaBhV7AlIaUUpRoFUuaaBZHQEDqWldkauR1fZQoaAZoCWgPQwi0WIrkK4JXwJSGlFKUaBVLaWgWR0BA7W9US7GvdX2UKGgGaAloD0MIvXFSmPfaT8CUhpRSlGgVS3hoFkdAQPIqTbFju3V9lChoBmgJaA9DCII5evzeXVfAlIaUUpRoFUtwaBZHQED4EYfnwG51fZQoaAZoCWgPQwg/HvruVsdYwJSGlFKUaBVLd2gWR0BBAYubqhUSdX2UKGgGaAloD0MIflUuVP6FL0CUhpRSlGgVS1loFkdAQQPOfNA1N3V9lChoBmgJaA9DCGlTdY9sH1jAlIaUUpRoFUuXaBZHQEGNUwztTk11fZQoaAZoCWgPQwiUTbnCe/lwwJSGlFKUaBVLe2gWR0BBk++ueSSvdX2UKGgGaAloD0MI5ssLsI91U8CUhpRSlGgVS05oFkdAQZbxRVIZqHV9lChoBmgJaA9DCIoAp3fxzirAlIaUUpRoFUtvaBZHQEGbf4REnb91fZQoaAZoCWgPQwj1u7A1WzxZwJSGlFKUaBVLTWgWR0BBnixNZeRgdX2UKGgGaAloD0MI7IZtizJTWMCUhpRSlGgVS29oFkdAQargbZOBUnV9lChoBmgJaA9DCPUu3o/bDlLAlIaUUpRoFUtyaBZHQEGuka/ATIx1fZQoaAZoCWgPQwgS91j60M1SwJSGlFKUaBVLWmgWR0BBsQT/Q0GedX2UKGgGaAloD0MInKOOjquNRcCUhpRSlGgVS3BoFkdAQbLyMDOkcnV9lChoBmgJaA9DCOpeJ/Vl6UnAlIaUUpRoFUtCaBZHQEHAmNR3u/l1fZQoaAZoCWgPQwjZtFII5ARGwJSGlFKUaBVLV2gWR0BBw12icoYvdX2UKGgGaAloD0MIVWe1wB7yU8CUhpRSlGgVS3hoFkdAQcSV+qioKnV9lChoBmgJaA9DCGbZk8DmhVTAlIaUUpRoFUtwaBZHQEHGOKfnOjZ1fZQoaAZoCWgPQwhHO2743QdZwJSGlFKUaBVLUmgWR0BB090q6OHWdX2UKGgGaAloD0MIczCbAMNYSMCUhpRSlGgVS0xoFkdAQdWShakhzXV9lChoBmgJaA9DCH+mXrcIMFzAlIaUUpRoFUuIaBZHQEHc1F6Rhc91fZQoaAZoCWgPQwjsTQzJyQpCwJSGlFKUaBVLjmgWR0BB4gCfYjB3dX2UKGgGaAloD0MInWUWodgGO8CUhpRSlGgVS3NoFkdAQey1eBxxUHV9lChoBmgJaA9DCC9QUmCBGWDAlIaUUpRoFUttaBZHQEHtIQOFxn51fZQoaAZoCWgPQwh8urpjsWFPwJSGlFKUaBVLWWgWR0BB7+IuXeFddX2UKGgGaAloD0MIoGzKFd4bX8CUhpRSlGgVS0VoFkdAQf3P/rB0p3V9lChoBmgJaA9DCN+kaVA0XFPAlIaUUpRoFUuHaBZHQEH+EA5q/M51fZQoaAZoCWgPQwiy8WCL3SxIwJSGlFKUaBVLbGgWR0BCAoCU5dWydX2UKGgGaAloD0MI5V5gViiCHUCUhpRSlGgVS4toFkdAQgjdFfAsTXV9lChoBmgJaA9DCKvP1VbsDU/AlIaUUpRoFUtTaBZHQEIOG5c1O0t1fZQoaAZoCWgPQwhZ+tAF9U9NwJSGlFKUaBVLWmgWR0BCE9XLeQ+2dX2UKGgGaAloD0MIuATgn1JRVMCUhpRSlGgVS3loFkdAQhWI42jwhHV9lChoBmgJaA9DCGcOSS2UHBvAlIaUUpRoFUtmaBZHQEIiFPi1iON1fZQoaAZoCWgPQwjIsmDij1pDwJSGlFKUaBVLh2gWR0BCI0QTVUdadX2UKGgGaAloD0MIDOiFOxeTXcCUhpRSlGgVS1ZoFkdAQiTr1M/QjXV9lChoBmgJaA9DCFVtN8E3fSDAlIaUUpRoFUtUaBZHQEImB4lhPTJ1fZQoaAZoCWgPQwic/BadLB9NwJSGlFKUaBVLUWgWR0BCMcbzbvgFdX2UKGgGaAloD0MIYyXmWUlcUsCUhpRSlGgVS31oFkdAQjnM+u/1x3V9lChoBmgJaA9DCNSBrKdWR0bAlIaUUpRoFUt2aBZHQEI8wmE4//x1fZQoaAZoCWgPQwiQ3QVKCnBJwJSGlFKUaBVLlWgWR0BCQe0Xxe9jdX2UKGgGaAloD0MIHJdxUwPUXsCUhpRSlGgVS05oFkdAQkJemelKsnV9lChoBmgJaA9DCGsotRfRCGbAlIaUUpRoFUtVaBZHQEJKoJiRW911fZQoaAZoCWgPQwjCps6j4jdBwJSGlFKUaBVLTGgWR0BCS46wMYuTdX2UKGgGaAloD0MIEk4LXvRdR8CUhpRSlGgVS1hoFkdAQlJSzgMtsnV9lChoBmgJaA9DCNRDNLqDllDAlIaUUpRoFUt2aBZHQEJYh9srNGF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.29 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0bdc01f73d1407e935ae16b2c86b7ba363f9ebfd5377f2a1ca61e3778e972c
|
3 |
+
size 191395
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -298.7584834892652, "std_reward": 94.35763359344253, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T12:26:15.429799"}
|
test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:094a8c5c91b94e5b9e1303040594ca68768b715a501d816ddc6b36a4c63046c1
|
3 |
+
size 143187
|
test/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
test/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb1dc2e0c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb1dc2e0ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb1dc2e0d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb1dc2e0dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb1dc2e0e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb1dc2e0ee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb1dc2e0f70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb1dc2e3040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb1dc2e30d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb1dc2e3160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb1dc2e31f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb1dc2dd840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 4,
|
45 |
+
"num_timesteps": 53248,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652177226.45135,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAANr89T30nIM/4qh/PjttD7/dZz0+DuiZPQAAAAAAAAAAGvE8Payaqzxtd+49uT9iv0iZN73gWIs8AAAAAAAAAAAAXES84te4PzJnmb4SJ6g+IK92PP0BdD0AAAAAAAAAAPN4Ar7v5EE+ntW+vuc+bL9Ji3o+4fEhPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0649599999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5BBxcyqhV8CUhpRSlIwBbJRLcowBdJRHQD6lf9gnc+J1fZQoaAZoCWgPQwiYolwavz5cwJSGlFKUaBVLR2gWR0A+sjpcHGCJdX2UKGgGaAloD0MIZW1TPC5yXcCUhpRSlGgVS01oFkdAPrcmKIi1RnV9lChoBmgJaA9DCKJCdXPx0UfAlIaUUpRoFUtqaBZHQD7HP9kz41x1fZQoaAZoCWgPQwjsL7snD/JbwJSGlFKUaBVLZGgWR0A+y8tf5ULldX2UKGgGaAloD0MISpf+JakQX8CUhpRSlGgVS2ZoFkdAPtmC2+fyw3V9lChoBmgJaA9DCKdZoN0hIFbAlIaUUpRoFUtlaBZHQD7d//echDB1fZQoaAZoCWgPQwhvu9Bcp05RwJSGlFKUaBVLTGgWR0A+58x9G7SRdX2UKGgGaAloD0MIg4k/ijr3VsCUhpRSlGgVS1doFkdAPvpMpPRAr3V9lChoBmgJaA9DCAINNnUe7FfAlIaUUpRoFUuMaBZHQD78hLXcxj91fZQoaAZoCWgPQwijBP2FHmFjwJSGlFKUaBVLY2gWR0A/A3lCCz1LdX2UKGgGaAloD0MIfuIA+n1cXMCUhpRSlGgVS3hoFkdAPxVB+nZTQ3V9lChoBmgJaA9DCMyWrIpwUljAlIaUUpRoFUtVaBZHQD8aNcW0qpd1fZQoaAZoCWgPQwgMXB5rRuxawJSGlFKUaBVLYmgWR0A/J/LkjopydX2UKGgGaAloD0MIqmIq/QQCYcCUhpRSlGgVS4RoFkdAPy35rP+n63V9lChoBmgJaA9DCFxaDYl7uVXAlIaUUpRoFUtmaBZHQD87dGiHqNZ1fZQoaAZoCWgPQwgyxofZy2NUwJSGlFKUaBVLZWgWR0A/P+evpyIYdX2UKGgGaAloD0MI2nHD76ZrTsCUhpRSlGgVS0doFkdAP0gevIOpbXV9lChoBmgJaA9DCAaE1sMX9WDAlIaUUpRoFUthaBZHQD9MgZCOWB11fZQoaAZoCWgPQwg6W0BoPfdawJSGlFKUaBVLZmgWR0A/Yp1zQu27dX2UKGgGaAloD0MIlgfpKXJ8SsCUhpRSlGgVS0doFkdAQDeNxVAAyXV9lChoBmgJaA9DCHhha7bysEfAlIaUUpRoFUtraBZHQEA4s90Rvm51fZQoaAZoCWgPQwiZDMfzGSA9wJSGlFKUaBVLemgWR0BAQMIeHSF5dX2UKGgGaAloD0MIQZ/Ik6QkXsCUhpRSlGgVS2poFkdAQEyylenhsXV9lChoBmgJaA9DCCKKyRtgLkzAlIaUUpRoFUtcaBZHQEBNdeIEbHZ1fZQoaAZoCWgPQwjRr62f/hNNwJSGlFKUaBVLaGgWR0BAT0OmR/3GdX2UKGgGaAloD0MIKJ1IMNUNUcCUhpRSlGgVS3JoFkdAQFmeYlY2bXV9lChoBmgJaA9DCH4eozzz9EvAlIaUUpRoFUtaaBZHQEBieGwiaAp1fZQoaAZoCWgPQwhk6xnCMYNVwJSGlFKUaBVLgGgWR0BAaJcPe54GdX2UKGgGaAloD0MIK08g7BQjO8CUhpRSlGgVS0VoFkdAQGlMTN+so3V9lChoBmgJaA9DCB1xyAbSP0vAlIaUUpRoFUuHaBZHQEBqzZ6D5CZ1fZQoaAZoCWgPQwiIRncQO55YwJSGlFKUaBVLVmgWR0BAfAckt29tdX2UKGgGaAloD0MI+bziqUcqQ8CUhpRSlGgVS4NoFkdAQH4RRMvh63V9lChoBmgJaA9DCMIXJlOF02HAlIaUUpRoFUtsaBZHQEB/h3qzJIV1fZQoaAZoCWgPQwiInSl0Xl5UwJSGlFKUaBVLgGgWR0BAgvm5lOGkdX2UKGgGaAloD0MIol9bP/0RUsCUhpRSlGgVS1BoFkdAQIwy2x6fJ3V9lChoBmgJaA9DCLITXoJTT1HAlIaUUpRoFUtOaBZHQECNpSrHU+d1fZQoaAZoCWgPQwhcrROX41ExQJSGlFKUaBVLRWgWR0BAkJL26ClKdX2UKGgGaAloD0MI8pTVdD0lUcCUhpRSlGgVS2loFkdAQJQwsXizcHV9lChoBmgJaA9DCBDPEmQEOFfAlIaUUpRoFUtdaBZHQECjYZl4C6p1fZQoaAZoCWgPQwhYyFwZVDNKwJSGlFKUaBVLU2gWR0BApXjdYW+HdX2UKGgGaAloD0MIk3GMZI/nWMCUhpRSlGgVS4BoFkdAQKgIKMNtqHV9lChoBmgJaA9DCO9v0F59D1HAlIaUUpRoFUuRaBZHQECqTfR/mT11fZQoaAZoCWgPQwi139qJkqZSwJSGlFKUaBVLTWgWR0BAuZvDP4VRdX2UKGgGaAloD0MIqUwxB0E7PcCUhpRSlGgVS2BoFkdAQLuAEt/WlXV9lChoBmgJaA9DCC4cCMkC/lPAlIaUUpRoFUtwaBZHQEC8fT1CgK51fZQoaAZoCWgPQwhqF9NM93RvwJSGlFKUaBVLhWgWR0BAvtnGsFMadX2UKGgGaAloD0MIF0flJmo7VcCUhpRSlGgVS0xoFkdAQMnzBhx5s3V9lChoBmgJaA9DCBalhGBVP1fAlIaUUpRoFUtJaBZHQEDM6Ymb9ZR1fZQoaAZoCWgPQwjNH9PaNCRLwJSGlFKUaBVLWWgWR0BAzcophF3IdX2UKGgGaAloD0MIo5V7gVmhxD+UhpRSlGgVS2poFkdAQM6hFmWdE3V9lChoBmgJaA9DCGxB740hnEjAlIaUUpRoFUtOaBZHQEDYaAFxGUh1fZQoaAZoCWgPQwiAuKtXkf1OwJSGlFKUaBVLQ2gWR0BA2nKGL1mKdX2UKGgGaAloD0MIXoQpyqUZTsCUhpRSlGgVS25oFkdAQOHeUILPU3V9lChoBmgJaA9DCNDU6xaBhV7AlIaUUpRoFUuaaBZHQEDqWldkauR1fZQoaAZoCWgPQwi0WIrkK4JXwJSGlFKUaBVLaWgWR0BA7W9US7GvdX2UKGgGaAloD0MIvXFSmPfaT8CUhpRSlGgVS3hoFkdAQPIqTbFju3V9lChoBmgJaA9DCII5evzeXVfAlIaUUpRoFUtwaBZHQED4EYfnwG51fZQoaAZoCWgPQwg/HvruVsdYwJSGlFKUaBVLd2gWR0BBAYubqhUSdX2UKGgGaAloD0MIflUuVP6FL0CUhpRSlGgVS1loFkdAQQPOfNA1N3V9lChoBmgJaA9DCGlTdY9sH1jAlIaUUpRoFUuXaBZHQEGNUwztTk11fZQoaAZoCWgPQwiUTbnCe/lwwJSGlFKUaBVLe2gWR0BBk++ueSSvdX2UKGgGaAloD0MI5ssLsI91U8CUhpRSlGgVS05oFkdAQZbxRVIZqHV9lChoBmgJaA9DCIoAp3fxzirAlIaUUpRoFUtvaBZHQEGbf4REnb91fZQoaAZoCWgPQwj1u7A1WzxZwJSGlFKUaBVLTWgWR0BBnixNZeRgdX2UKGgGaAloD0MI7IZtizJTWMCUhpRSlGgVS29oFkdAQargbZOBUnV9lChoBmgJaA9DCPUu3o/bDlLAlIaUUpRoFUtyaBZHQEGuka/ATIx1fZQoaAZoCWgPQwgS91j60M1SwJSGlFKUaBVLWmgWR0BBsQT/Q0GedX2UKGgGaAloD0MInKOOjquNRcCUhpRSlGgVS3BoFkdAQbLyMDOkcnV9lChoBmgJaA9DCOpeJ/Vl6UnAlIaUUpRoFUtCaBZHQEHAmNR3u/l1fZQoaAZoCWgPQwjZtFII5ARGwJSGlFKUaBVLV2gWR0BBw12icoYvdX2UKGgGaAloD0MIVWe1wB7yU8CUhpRSlGgVS3hoFkdAQcSV+qioKnV9lChoBmgJaA9DCGbZk8DmhVTAlIaUUpRoFUtwaBZHQEHGOKfnOjZ1fZQoaAZoCWgPQwhHO2743QdZwJSGlFKUaBVLUmgWR0BB090q6OHWdX2UKGgGaAloD0MIczCbAMNYSMCUhpRSlGgVS0xoFkdAQdWShakhzXV9lChoBmgJaA9DCH+mXrcIMFzAlIaUUpRoFUuIaBZHQEHc1F6Rhc91fZQoaAZoCWgPQwjsTQzJyQpCwJSGlFKUaBVLjmgWR0BB4gCfYjB3dX2UKGgGaAloD0MInWUWodgGO8CUhpRSlGgVS3NoFkdAQey1eBxxUHV9lChoBmgJaA9DCC9QUmCBGWDAlIaUUpRoFUttaBZHQEHtIQOFxn51fZQoaAZoCWgPQwh8urpjsWFPwJSGlFKUaBVLWWgWR0BB7+IuXeFddX2UKGgGaAloD0MIoGzKFd4bX8CUhpRSlGgVS0VoFkdAQf3P/rB0p3V9lChoBmgJaA9DCN+kaVA0XFPAlIaUUpRoFUuHaBZHQEH+EA5q/M51fZQoaAZoCWgPQwiy8WCL3SxIwJSGlFKUaBVLbGgWR0BCAoCU5dWydX2UKGgGaAloD0MI5V5gViiCHUCUhpRSlGgVS4toFkdAQgjdFfAsTXV9lChoBmgJaA9DCKvP1VbsDU/AlIaUUpRoFUtTaBZHQEIOG5c1O0t1fZQoaAZoCWgPQwhZ+tAF9U9NwJSGlFKUaBVLWmgWR0BCE9XLeQ+2dX2UKGgGaAloD0MIuATgn1JRVMCUhpRSlGgVS3loFkdAQhWI42jwhHV9lChoBmgJaA9DCGcOSS2UHBvAlIaUUpRoFUtmaBZHQEIiFPi1iON1fZQoaAZoCWgPQwjIsmDij1pDwJSGlFKUaBVLh2gWR0BCI0QTVUdadX2UKGgGaAloD0MIDOiFOxeTXcCUhpRSlGgVS1ZoFkdAQiTr1M/QjXV9lChoBmgJaA9DCFVtN8E3fSDAlIaUUpRoFUtUaBZHQEImB4lhPTJ1fZQoaAZoCWgPQwic/BadLB9NwJSGlFKUaBVLUWgWR0BCMcbzbvgFdX2UKGgGaAloD0MIYyXmWUlcUsCUhpRSlGgVS31oFkdAQjnM+u/1x3V9lChoBmgJaA9DCNSBrKdWR0bAlIaUUpRoFUt2aBZHQEI8wmE4//x1fZQoaAZoCWgPQwiQ3QVKCnBJwJSGlFKUaBVLlWgWR0BCQe0Xxe9jdX2UKGgGaAloD0MIHJdxUwPUXsCUhpRSlGgVS05oFkdAQkJemelKsnV9lChoBmgJaA9DCGsotRfRCGbAlIaUUpRoFUtVaBZHQEJKoJiRW911fZQoaAZoCWgPQwjCps6j4jdBwJSGlFKUaBVLTGgWR0BCS46wMYuTdX2UKGgGaAloD0MIEk4LXvRdR8CUhpRSlGgVS1hoFkdAQlJSzgMtsnV9lChoBmgJaA9DCNRDNLqDllDAlIaUUpRoFUt2aBZHQEJYh9srNGF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 52,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvaG9tZS92Z29uaS92Z29uaXNhbnovZ2l0L2RybHRmLy50b3gvZHJsdGYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL3Znb25pL3Znb25pc2Fuei9naXQvZHJsdGYvLnRveC9kcmx0Zi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
test/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49af1519496e6055ac9c85f08c447205c6e4c26d535ca243a973181ede7cfb7f
|
3 |
+
size 84573
|
test/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee244d4f46465fe3ad878c95710b257edcff782eb458098cb5ae928deacf429
|
3 |
+
size 43073
|
test/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
test/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.29 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|