{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b1fcb5940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b1fcb59d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b1fcb5a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b1fcb5af0>", "_build": "<function ActorCriticPolicy._build at 0x7f1b1fcb5b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f1b1fcb5c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b1fcb5ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1b1fcb5d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b1fcb5dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b1fcb5e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b1fcb5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1b1fc9bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 30, "num_timesteps": 3010560, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673340816052036269, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAwAAAAAAAGBFCj6b4ik/A4D9PYOERr/s/2w+QCWIPQAAAAAAAAAAZjwNPSkof7qisQgz7RE4MRU/TTu/Qp6zAACAPwAAgD+ab1A8FJCDugDAczo1REw1tsE5OgMpjLkAAIA/AACAP5ppJjspaGm6LlEOOhBjlDWVI7g6ELqHNAAAgD8AAIA/gKUTvnxHgz72J88++E0Hv7IaX7rPi8c+AAAAAAAAAAAA+tM96bsLPu23j74hIJC+/AxYvYZIJr4AAAAAAAAAAHNvtb189aM/RX3jvguFDL9i4Au+lrufvgAAAAAAAAAAmlmWPGxd9Ltb1Ay+xEHoPGhKPz2qrr+9AACAPwAAgD+apRq8hfvcua4wwbU1SrawTTSbu4KIADUAAIA/AACAP/C0hz7UzJ8/5sYNPzHRAr9RWeQ+6ORWPgAAAAAAAAAAZkbXuymUYbrdwe47h3ZNNZHYKbsf1EQ0AACAPwAAgD9mmpe8exCKuhqaITRtsYEv1IEGu+88nLMAAIA/AACAP5rmkrzO56u842GCPiqPPr7/qPa9QnM6vgAAgD8AAAAA02QbPh9lfz4z2Ny+Wh3svnn81jywa1++AAAAAAAAAADNz9G8XCMuuv7VTTy0doc8bw3Duv6zbj0AAIA/AACAP82sPDy4Fqc/wvYLPoTSLb/VCQU8J3w5PQAAAAAAAAAAmuFIPJJlhT+zGe888gBfvyu/aDxdQO28AAAAAAAAAAAa43s9ew6JuubzLbjebyWz27fsOd5wSjcAAIA/AACAP6ZsOL5undM+K1ykPr7cH79m8i2+1uKHPgAAAAAAAAAAM5ZXPY+2dLqIa7s2CXaFMSlu3ro+G9y1AACAPwAAgD9N/ys+v0chPlhi3r4XkM2+I564PRXweb4AAAAAAAAAAAB03byPllW6J3uuOR3xS7SlTKW6GoZzswAAgD8AAIA/rUgTPod7cD9IAqo+JrAmvwISkj7MhjU+AAAAAAAAAACaPog8lCOzOwLnS761zjO+3LO1u5giaj8AAAAAAAAAAFNzMD4FSTY+MMzCvoGh076zTUs99qMqvgAAAAAAAAAAAESgPQCIsz4etCa+lHHyvudGGT1qX2u9AAAAAAAAAABmfK48+yWgvL2uJryQkfI8pAnwvW5zST0AAIA/AACAPw0YXD49Owe90gISO+8Qs7nGmWq+s4qDugAAgD8AAIA/5tO7PcUGkj8mAJg+tNJBv8lwKz6YQAs+AAAAAAAAAABmvn69gzUWvKYDRD3UcUU9W0J6PTo4Er4AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLHksIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg7709idVckCUhpRSlIwBbJRLyYwBdJRHQKoG2DgZTAF1fZQoaAZoCWgPQwgtCrsoenlxQJSGlFKUaBVL0WgWR0CqBxY5DJEIdX2UKGgGaAloD0MIKZXwhF41c0CUhpRSlGgVTS0BaBZHQKoHG5ZKWcB1fZQoaAZoCWgPQwglkBK79sNzQJSGlFKUaBVL/2gWR0CqB1yB06o3dX2UKGgGaAloD0MIf8LZrWVjcUCUhpRSlGgVS8NoFkdAqgeBIFvAGnV9lChoBmgJaA9DCBTsv84NQHFAlIaUUpRoFUvWaBZHQKoHpRDTjNp1fZQoaAZoCWgPQwhcrn5sEupwQJSGlFKUaBVLpmgWR0CqB9Mrd30PdX2UKGgGaAloD0MIfa62Yr+bcECUhpRSlGgVS7RoFkdAqgfqz5XU6XV9lChoBmgJaA9DCHIYzF+hlHJAlIaUUpRoFUvKaBZHQKoISTyJ9Ap1fZQoaAZoCWgPQwjk9ssna/VyQJSGlFKUaBVLl2gWR0CqCFat9x6wdX2UKGgGaAloD0MI+yDLgomncUCUhpRSlGgVS8poFkdAqgiC++M6zXV9lChoBmgJaA9DCMVU+gmnxHNAlIaUUpRoFUvGaBZHQKoIxoIv8Il1fZQoaAZoCWgPQwixGeCCbJ1xQJSGlFKUaBVLxGgWR0CqCNS+6Ae8dX2UKGgGaAloD0MIqtbCLHRRc0CUhpRSlGgVS+poFkdAqgjNHDrJKnV9lChoBmgJaA9DCEn0Mopl43JAlIaUUpRoFUvYaBZHQKoJCMPz4Dd1fZQoaAZoCWgPQwiDpiVWBq5wQJSGlFKUaBVLrGgWR0CqCStYr8R+dX2UKGgGaAloD0MIdv9YiA4lcUCUhpRSlGgVTUkBaBZHQKoJcTRplBh1fZQoaAZoCWgPQwiYM9sVehtyQJSGlFKUaBVLxGgWR0CqCcC1y/9HdX2UKGgGaAloD0MIbvqzHylCc0CUhpRSlGgVS+doFkdAqgndxffGdnV9lChoBmgJaA9DCBPyQc+mvnFAlIaUUpRoFUu8aBZHQKoJ7RMN+b51fZQoaAZoCWgPQwh/3H75JM1wQJSGlFKUaBVLuGgWR0CqCigAIY3vdX2UKGgGaAloD0MIaOvgYC8DdECUhpRSlGgVS9toFkdAqgpDJIUah3V9lChoBmgJaA9DCGJJufucaXFAlIaUUpRoFU0wAWgWR0CqCkhlDneSdX2UKGgGaAloD0MIs+xJYPOrcECUhpRSlGgVS8JoFkdAqgpO1KGtZHV9lChoBmgJaA9DCF69iozONnJAlIaUUpRoFU0MAWgWR0CqCk2vjfeldX2UKGgGaAloD0MIPZl/9A07c0CUhpRSlGgVTQ4BaBZHQKoKXtShrWR1fZQoaAZoCWgPQwjSOqqaIDxyQJSGlFKUaBVNJQFoFkdAqgsG1KGtZHV9lChoBmgJaA9DCFch5SdVZnBAlIaUUpRoFUvdaBZHQKoLKny/bj91fZQoaAZoCWgPQwjCEg8oG19zQJSGlFKUaBVLuGgWR0CqCzB/Aj6fdX2UKGgGaAloD0MIQl96+3PIc0CUhpRSlGgVS7xoFkdAqgtCr3j+73V9lChoBmgJaA9DCHo57L4j7HFAlIaUUpRoFUvaaBZHQKoLgqVhTfl1fZQoaAZoCWgPQwjVPEfk+8FzQJSGlFKUaBVL9mgWR0CqC4JQ+EAYdX2UKGgGaAloD0MICwithy9DPkCUhpRSlGgVS1toFkdAqgve2/i5u3V9lChoBmgJaA9DCIcXRKQmg3NAlIaUUpRoFUvxaBZHQKoMMJ53Tux1fZQoaAZoCWgPQwgV5GcjFytxQJSGlFKUaBVLuWgWR0CqDKRy4nWrdX2UKGgGaAloD0MIjh6/tykOckCUhpRSlGgVS+ZoFkdAqgzDh3qzJXV9lChoBmgJaA9DCEz+J3831nNAlIaUUpRoFUvhaBZHQKoM1fJmukl1fZQoaAZoCWgPQwgX9N4YQrFxQJSGlFKUaBVLqWgWR0CqDPX5vcagdX2UKGgGaAloD0MI3pBGBQ7LcECUhpRSlGgVS75oFkdAqg0bnRsuWnV9lChoBmgJaA9DCJ4oCYk03XJAlIaUUpRoFUvraBZHQKoNLkTYdyV1fZQoaAZoCWgPQwjxKQDGs41zQJSGlFKUaBVLwmgWR0CqDSwnx8UmdX2UKGgGaAloD0MIGvm84qlPc0CUhpRSlGgVS8ZoFkdAqg14dXDFZXV9lChoBmgJaA9DCAJjfQMTbnNAlIaUUpRoFUvxaBZHQKoNt2q1gIB1fZQoaAZoCWgPQwh4YtaLIapyQJSGlFKUaBVLnGgWR0CqDctZ/0/XdX2UKGgGaAloD0MIP/89eO3Lb0CUhpRSlGgVTQgBaBZHQKoOU+ajN6h1fZQoaAZoCWgPQwj2RUJbTkBxQJSGlFKUaBVL22gWR0CqDmtCJGe+dX2UKGgGaAloD0MI4gFlU65JckCUhpRSlGgVS8loFkdAqg69A5aNdnV9lChoBmgJaA9DCDNQGf/+d3FAlIaUUpRoFUvMaBZHQKoO9CFbmlt1fZQoaAZoCWgPQwglehnFclBwQJSGlFKUaBVLzWgWR0CqDwTpgTh6dX2UKGgGaAloD0MIBMjQsQPhcUCUhpRSlGgVS9FoFkdAqg8y86FM7HV9lChoBmgJaA9DCAhyUMKM7HFAlIaUUpRoFUu9aBZHQKoPevW6K+B1fZQoaAZoCWgPQwiYMQVrXAJyQJSGlFKUaBVLuWgWR0CqD/S1eBxxdX2UKGgGaAloD0MIeeV620wNc0CUhpRSlGgVS6VoFkdAqhA+zByjpXV9lChoBmgJaA9DCKDCEaTSMnFAlIaUUpRoFUvaaBZHQKoQhOIInjR1fZQoaAZoCWgPQwhfJLTlnCZxQJSGlFKUaBVNRwFoFkdAqhB/FirksHV9lChoBmgJaA9DCN3u5T75uHBAlIaUUpRoFUu+aBZHQKoQiMnZ00Z1fZQoaAZoCWgPQwjg929eHO9zQJSGlFKUaBVL5GgWR0CqELWmxdIHdX2UKGgGaAloD0MIXDl7ZzQ9ckCUhpRSlGgVTS4BaBZHQKoRJ8F6iTN1fZQoaAZoCWgPQwh4CyQofhtxQJSGlFKUaBVNPgFoFkdAqhFfezlcQnV9lChoBmgJaA9DCMRg/gpZw3FAlIaUUpRoFU04AWgWR0CqEcg2Ifr9dX2UKGgGaAloD0MIfEYiNELQcECUhpRSlGgVS7ZoFkdAqhHN+7UXpHV9lChoBmgJaA9DCEzChTxCC3JAlIaUUpRoFUvKaBZHQKoR4S0Sh8J1fZQoaAZoCWgPQwiO6nQgq5NwQJSGlFKUaBVLrmgWR0CqEfJ0wJw9dX2UKGgGaAloD0MIlKXW+w0HcUCUhpRSlGgVS71oFkdAqhH8Of/WD3V9lChoBmgJaA9DCIrNx7VhVXNAlIaUUpRoFUvnaBZHQKoSeIkZ75V1fZQoaAZoCWgPQwgtlbcj3DdzQJSGlFKUaBVN1wFoFkdAqhKFyYG+snV9lChoBmgJaA9DCHCaPjtgH3BAlIaUUpRoFUu8aBZHQKoSiwt8NQV1fZQoaAZoCWgPQwg1KQXd3nxyQJSGlFKUaBVLsWgWR0CqEwDU3GXHdX2UKGgGaAloD0MIcaq1MAv+cUCUhpRSlGgVS+9oFkdAqhMsK/mDDnV9lChoBmgJaA9DCKTjamTXSXJAlIaUUpRoFUu5aBZHQKoTh3g1m8N1fZQoaAZoCWgPQwiu8ZnsX3tyQJSGlFKUaBVNVQFoFkdAqhORkAggYHV9lChoBmgJaA9DCDhpGhRNfHNAlIaUUpRoFU0IAWgWR0CqE6M8YAKfdX2UKGgGaAloD0MIQFBu27dWckCUhpRSlGgVTSEBaBZHQKoUIvkili11fZQoaAZoCWgPQwhR3sfR3CxyQJSGlFKUaBVNbAFoFkdAqhSNIwudw3V9lChoBmgJaA9DCFPL1voiqHJAlIaUUpRoFUvaaBZHQKoUlQAMlTp1fZQoaAZoCWgPQwiVuflGNNdxQJSGlFKUaBVL2mgWR0CqFRjIJZ4fdX2UKGgGaAloD0MIhpLJqV2YckCUhpRSlGgVS+RoFkdAqhUUPvrnknV9lChoBmgJaA9DCPRwAtOpAHNAlIaUUpRoFUu4aBZHQKoVQEkjX4F1fZQoaAZoCWgPQwi0WfW5GlhxQJSGlFKUaBVLuWgWR0CqFT3VCojwdX2UKGgGaAloD0MI1NNH4M9zcECUhpRSlGgVS7xoFkdAqhYxC+lCTnV9lChoBmgJaA9DCHehuU6jp3NAlIaUUpRoFU0xAWgWR0CqFjYxk/bCdX2UKGgGaAloD0MI7s1vmOgCcECUhpRSlGgVS+ZoFkdAqhZuUOd5IHV9lChoBmgJaA9DCA7bFmV2HXNAlIaUUpRoFUvpaBZHQKoWraFEiMZ1fZQoaAZoCWgPQwjL2TujLbdyQJSGlFKUaBVL/2gWR0CqFsz7di2EdX2UKGgGaAloD0MIdFyN7AqqckCUhpRSlGgVTWABaBZHQKoW1Pa+N991fZQoaAZoCWgPQwhb0HtjyLdyQJSGlFKUaBVLmWgWR0CqFuviDM/ydX2UKGgGaAloD0MIcZNRZVitcECUhpRSlGgVS81oFkdAqhb+ukk8inV9lChoBmgJaA9DCNriGp/JE3JAlIaUUpRoFUvXaBZHQKoXRF6zE751fZQoaAZoCWgPQwgS+S6lrm9xQJSGlFKUaBVLumgWR0CqF0o91U2ldX2UKGgGaAloD0MILQWk/U+JcECUhpRSlGgVS8FoFkdAqhdkHWz4UXV9lChoBmgJaA9DCLudfeXB/nJAlIaUUpRoFU2SAmgWR0CqF3G8ujASdX2UKGgGaAloD0MI0jb+RKUJckCUhpRSlGgVS+FoFkdAqheRVyWAw3V9lChoBmgJaA9DCDYf14YKYHJAlIaUUpRoFUvIaBZHQKoXmCmMwUR1fZQoaAZoCWgPQwjqBgq8EzhxQJSGlFKUaBVNSwFoFkdAqhhUfaHsTnV9lChoBmgJaA9DCJj75CjARHNAlIaUUpRoFU0EAWgWR0CqGHzQmeDndX2UKGgGaAloD0MI0zHnGXuwc0CUhpRSlGgVS9BoFkdAqhi65NGmUHV9lChoBmgJaA9DCP9eCg8ar29AlIaUUpRoFUuvaBZHQKoY6GHHmzV1fZQoaAZoCWgPQwgh6j4AaX5yQJSGlFKUaBVL12gWR0CqGQCJGe+VdX2UKGgGaAloD0MIUFPL1rpocECUhpRSlGgVS+VoFkdAqhlNUp/gBXV9lChoBmgJaA9DCBL7BFCMFEFAlIaUUpRoFUtvaBZHQKoZhBsyi251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}