File size: 16,098 Bytes
26464f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# Copyright (c) Meta Platforms, Inc. and affiliates
# All rights reserved.
#
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Tuple

from fairseq2.data import VocabularyInfo
from fairseq2.models.utils.arch_registry import ArchitectureRegistry
from fairseq2.nn.embedding import StandardEmbedding, init_scaled_embedding
from fairseq2.nn.position_encoder import SinusoidalPositionEncoder
from fairseq2.nn.projection import Linear
from fairseq2.nn.transformer import (
    MultiheadAttention,
    StandardMultiheadAttention,
    TransformerNormOrder,
    create_default_sdpa,
)
from fairseq2.typing import DataType, Device
from torch.nn import Conv1d

from seamless_communication.models.generator.ecapa_tdnn_builder import (
    EcapaTDNNBuilder,
    EcapaTDNNConfig,
    ecapa_tdnn_archs,
)
from seamless_communication.models.generator.vocoder import (
    PretsselDecoderFrontend,
    PretsselEncoderFrontend,
    PretsselVocoder,
)
from seamless_communication.models.unity.fft_decoder import FeedForwardTransformer
from seamless_communication.models.unity.fft_decoder_layer import (
    Conv1dBlock,
    FeedForwardTransformerLayer,
)
from seamless_communication.models.unity.length_regulator import (
    VarianceAdaptor,
    VariancePredictor,
)
from seamless_communication.models.unity.t2u_builder import VariancePredictorConfig


@dataclass
class PretsselEncoderFrontendConfig:
    prosody_encoder_config: EcapaTDNNConfig
    dropout: float
    lang_embed_dim: Optional[int] = None


@dataclass
class FFTLayerConfig:
    attention_heads: int
    hidden_dim: int
    kernel_size: int
    dropout: float
    conv1d_dropout: float
    film_cond_dim: int
    use_film: bool = False


@dataclass
class PretsselDecoderFrontendConfig:
    upsampling_type: Literal["gaussian", "hard"]
    variance_predictor_config: VariancePredictorConfig
    add_variance_parallel: bool


@dataclass
class VocoderConfig:
    """Holds the configuration of a Vocoder model."""

    encoder_frontend_config: PretsselEncoderFrontendConfig
    fft_layer_config: FFTLayerConfig
    decoder_frontend_config: PretsselDecoderFrontendConfig
    pn_conv_dim: int
    pn_layers: int
    pn_conv_kernel_size: int
    pn_dropout: float
    vocab_info: VocabularyInfo
    model_dim: int
    max_seq_len: int
    encoder_layers: int
    decoder_layers: int
    mel_dim: int
    langs: List  # type: ignore[type-arg]
    upsample_rates: List[int]
    upsample_kernel_sizes: List[int]
    upsample_initial_channel: int
    resblock_kernel_sizes: List[int]
    resblock_dilation_sizes: List[List[int]]
    channels: int
    dimension: int
    n_filters: int
    ratios: List[int]
    norm: Literal["none", "weight_norm", "spectral_norm", "time_group_norm"]
    norm_params: Dict[str, Any]
    kernel_size: int
    last_kernel_size: int
    residual_kernel_size: int
    causal: bool
    pad_mode: str
    true_skip: bool
    compress: int
    lstm: int
    disable_norm_outer_blocks: int
    trim_right_ratio: float
    gcmvn_stats: Dict[str, List]  # type: ignore[type-arg]


vocoder_archs = ArchitectureRegistry[VocoderConfig]("vocoder_pretssel")


vocoder_arch = vocoder_archs.decorator


def pretssel_config() -> (
    Tuple[PretsselEncoderFrontendConfig, FFTLayerConfig, PretsselDecoderFrontendConfig]
):
    prosody_encoder_config = ecapa_tdnn_archs.get_config("base")

    encoder_frontend_config = PretsselEncoderFrontendConfig(
        prosody_encoder_config=prosody_encoder_config,
        dropout=0.2,
        lang_embed_dim=64,
    )

    fft_layer_config = FFTLayerConfig(
        attention_heads=2,
        hidden_dim=1024,
        kernel_size=9,
        dropout=0.0,
        conv1d_dropout=0.2,
        use_film=True,
        film_cond_dim=576,
    )

    variance_predictor_config = VariancePredictorConfig(
        var_pred_hidden_dim=512,
        var_pred_kernel_size=5,
        var_pred_dropout=0.5,
        use_film=True,
        film_cond_dim=576,
    )

    decoder_frontend_config = PretsselDecoderFrontendConfig(
        upsampling_type="gaussian",
        variance_predictor_config=variance_predictor_config,
        add_variance_parallel=True,
    )
    return (
        encoder_frontend_config,
        fft_layer_config,
        decoder_frontend_config,
    )


@vocoder_arch("16khz")
def _16khz_vocoder() -> VocoderConfig:
    (
        encoder_frontend_config,
        fft_layer_config,
        decoder_frontend_config,
    ) = pretssel_config()

    return VocoderConfig(
        encoder_frontend_config=encoder_frontend_config,
        fft_layer_config=fft_layer_config,
        decoder_frontend_config=decoder_frontend_config,
        pn_conv_dim=512,
        pn_layers=5,
        pn_conv_kernel_size=5,
        pn_dropout=0.5,
        vocab_info=VocabularyInfo(
            size=10004, unk_idx=3, bos_idx=0, eos_idx=2, pad_idx=1
        ),
        model_dim=256,
        max_seq_len=10000,
        encoder_layers=4,
        decoder_layers=4,
        mel_dim=80,
        langs=[],
        upsample_rates=[5, 4, 4, 2],
        upsample_kernel_sizes=[10, 8, 8, 4],
        upsample_initial_channel=512,
        resblock_kernel_sizes=[3, 7, 11],
        resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        channels=1,
        dimension=128,
        n_filters=32,
        ratios=[8, 5, 4, 2],
        norm="weight_norm",
        norm_params={},
        kernel_size=7,
        last_kernel_size=7,
        residual_kernel_size=3,
        causal=False,
        pad_mode="constant",
        true_skip=True,
        compress=2,
        lstm=2,
        disable_norm_outer_blocks=0,
        trim_right_ratio=1.0,
        gcmvn_stats={},
    )


@vocoder_arch("24khz")
def _24khz_vocoder() -> VocoderConfig:
    (
        encoder_frontend_config,
        fft_layer_config,
        decoder_frontend_config,
    ) = pretssel_config()

    return VocoderConfig(
        encoder_frontend_config=encoder_frontend_config,
        fft_layer_config=fft_layer_config,
        decoder_frontend_config=decoder_frontend_config,
        pn_conv_dim=512,
        pn_layers=5,
        pn_conv_kernel_size=5,
        pn_dropout=0.5,
        vocab_info=VocabularyInfo(
            size=10004, unk_idx=3, bos_idx=0, eos_idx=2, pad_idx=1
        ),
        model_dim=256,
        max_seq_len=10000,
        encoder_layers=4,
        decoder_layers=4,
        mel_dim=80,
        langs=[],
        upsample_rates=[5, 4, 4, 3],
        upsample_kernel_sizes=[10, 8, 8, 6],
        upsample_initial_channel=512,
        resblock_kernel_sizes=[3, 7, 11],
        resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        channels=1,
        dimension=128,
        n_filters=32,
        ratios=[8, 5, 4, 2],
        norm="weight_norm",
        norm_params={},
        kernel_size=7,
        last_kernel_size=7,
        residual_kernel_size=3,
        causal=False,
        pad_mode="constant",
        true_skip=True,
        compress=2,
        lstm=2,
        disable_norm_outer_blocks=0,
        trim_right_ratio=1.0,
        gcmvn_stats={},
    )


class PretsselVocoderBuilder:
    config: VocoderConfig
    prosody_encoder_builder: EcapaTDNNBuilder
    device: Optional[Device] = None
    dtype: Optional[DataType] = None

    def __init__(
        self,
        config: VocoderConfig,
        prosody_encoder_builder: EcapaTDNNBuilder,
        *,
        device: Optional[Device] = None,
        dtype: Optional[DataType] = None,
    ) -> None:
        """
        :param config:
            The configuration to use.
        :param device:
            The device on which to initialize modules.
        :param dtype:
            The data type of module parameters and buffers.
        """
        self.config = config
        self.prosody_encoder_builder = prosody_encoder_builder
        self.device, self.dtype = device, dtype

    def build_embed_tokens(self) -> StandardEmbedding:
        """Build a unit embedding table."""

        return StandardEmbedding(
            num_embeddings=self.config.vocab_info.size,
            embedding_dim=self.config.model_dim,
            init_fn=init_scaled_embedding,
            device=self.device,
            dtype=self.dtype,
        )

    def build_fft(self, num_layers: int) -> FeedForwardTransformer:
        """Build a Transformer encoder."""

        layers = [self.build_fft_layer() for _ in range(num_layers)]

        return FeedForwardTransformer(
            layers,
            norm_order=TransformerNormOrder.POST,
            device=self.device,
            dtype=self.dtype,
        )

    def build_fft_layer(self) -> FeedForwardTransformerLayer:
        """Build a Transformer decoder layer."""

        self_attn = self.build_attention(self.config.fft_layer_config.attention_heads)

        conv1d = Conv1dBlock(
            self.config.model_dim,
            self.config.fft_layer_config.hidden_dim,
            self.config.fft_layer_config.kernel_size,
            bias=True,
            device=self.device,
            dtype=self.dtype,
        )

        return FeedForwardTransformerLayer(
            self_attn,
            conv1d,
            dropout_p=0.0,  # fairseq1 doesn't have this
            conv1d_dropout_p=self.config.fft_layer_config.conv1d_dropout,
            use_film=self.config.fft_layer_config.use_film,
            film_cond_dim=self.config.fft_layer_config.film_cond_dim,
            device=self.device,
            dtype=self.dtype,
        )

    def build_attention(self, num_heads: int) -> MultiheadAttention:
        """Build a Transformer multi-head attention layer."""

        sdpa = create_default_sdpa(attn_dropout_p=self.config.fft_layer_config.dropout)

        return StandardMultiheadAttention(
            self.config.model_dim,
            num_heads,
            sdpa=sdpa,
            device=self.device,
            dtype=self.dtype,
        )

    def build_variance_adaptor(
        self,
        decoder_frontend_config: PretsselDecoderFrontendConfig,
    ) -> VarianceAdaptor:
        """Build a variance adaptor module."""

        variance_predictor_config = decoder_frontend_config.variance_predictor_config

        pitch_predictor = VariancePredictor(
            self.config.model_dim,
            variance_predictor_config.var_pred_hidden_dim,
            variance_predictor_config.var_pred_kernel_size,
            variance_predictor_config.var_pred_dropout,
            use_film=variance_predictor_config.use_film,
            film_cond_dim=variance_predictor_config.film_cond_dim,
            device=self.device,
            dtype=self.dtype,
        )

        embed_pitch = Conv1d(1, self.config.model_dim, kernel_size=1)

        vuv_predictor = VariancePredictor(
            self.config.model_dim,
            variance_predictor_config.var_pred_hidden_dim,
            variance_predictor_config.var_pred_kernel_size,
            variance_predictor_config.var_pred_dropout,
            use_film=variance_predictor_config.use_film,
            film_cond_dim=variance_predictor_config.film_cond_dim,
            device=self.device,
            dtype=self.dtype,
        )

        energy_predictor = VariancePredictor(
            self.config.model_dim,
            variance_predictor_config.var_pred_hidden_dim,
            variance_predictor_config.var_pred_kernel_size,
            variance_predictor_config.var_pred_dropout,
            use_film=variance_predictor_config.use_film,
            film_cond_dim=variance_predictor_config.film_cond_dim,
            device=self.device,
            dtype=self.dtype,
        )

        embed_energy = Conv1d(1, self.config.model_dim, kernel_size=1)

        variance_adaptor = VarianceAdaptor(
            duration_predictor=None,
            pitch_predictor=pitch_predictor,
            embed_pitch=embed_pitch,
            vuv_predictor=vuv_predictor,
            energy_predictor=energy_predictor,
            embed_energy=embed_energy,
            add_variance_parallel=decoder_frontend_config.add_variance_parallel,
            upsampling_type=decoder_frontend_config.upsampling_type,
        )

        return variance_adaptor

    def build_model(self) -> PretsselVocoder:
        """build the pretssel vocoder."""
        prosody_encoder = self.prosody_encoder_builder.build_model()
        embed_tokens = self.build_embed_tokens()

        embed_positions = SinusoidalPositionEncoder(
            self.config.model_dim,
            self.config.max_seq_len,
            _legacy_pad_idx=self.config.vocab_info.pad_idx,
            device=self.device,
        )
        lang_to_index = {l: i for i, l in enumerate(self.config.langs)}
        encoder_frontend = PretsselEncoderFrontend(
            prosody_encoder,
            embed_tokens,
            embed_positions,
            lang_to_index,
            lang_embed_dim=self.config.encoder_frontend_config.lang_embed_dim,
            dropout_p=self.config.encoder_frontend_config.dropout,
            device=self.device,
            dtype=self.dtype,
        )

        encoder = self.build_fft(self.config.encoder_layers)

        variance_adaptor = self.build_variance_adaptor(
            self.config.decoder_frontend_config
        )

        decoder_frontend = PretsselDecoderFrontend(
            variance_adaptor,
            embed_positions,
            device=self.device,
            dtype=self.dtype,
        )

        decoder = self.build_fft(self.config.decoder_layers)

        final_proj = Linear(
            self.config.model_dim,
            self.config.mel_dim,
            bias=True,
            device=self.device,
            dtype=self.dtype,
        )

        gcmvn_mean = gcmvn_std = None
        if self.config.gcmvn_stats is not None:
            gcmvn_mean = self.config.gcmvn_stats["mean"]
            gcmvn_std = self.config.gcmvn_stats["std"]

        vocoder = PretsselVocoder(
            encoder_frontend=encoder_frontend,
            encoder=encoder,
            decoder_frontend=decoder_frontend,
            decoder=decoder,
            final_proj=final_proj,
            pn_n_channels=self.config.pn_conv_dim,
            pn_kernel_size=self.config.pn_conv_kernel_size,
            pn_layers=self.config.pn_layers,
            pn_dropout=self.config.pn_dropout,
            upsample_rates=self.config.upsample_rates,
            upsample_kernel_sizes=self.config.upsample_kernel_sizes,
            upsample_initial_channel=self.config.upsample_initial_channel,
            resblock_kernel_sizes=self.config.resblock_kernel_sizes,
            resblock_dilation_sizes=self.config.resblock_dilation_sizes,
            channels=self.config.channels,
            dimension=self.config.dimension,
            n_filters=self.config.n_filters,
            ratios=self.config.ratios,
            norm=self.config.norm,
            norm_params=self.config.norm_params,
            kernel_size=self.config.kernel_size,
            last_kernel_size=self.config.last_kernel_size,
            residual_kernel_size=self.config.residual_kernel_size,
            causal=self.config.causal,
            pad_mode=self.config.pad_mode,
            true_skip=self.config.true_skip,
            compress=self.config.compress,
            lstm=self.config.lstm,
            disable_norm_outer_blocks=self.config.disable_norm_outer_blocks,
            trim_right_ratio=self.config.trim_right_ratio,
            gcmvn_mean=gcmvn_mean,
            gcmvn_std=gcmvn_std,
        )
        vocoder.to(dtype=self.dtype, device=self.device)
        return vocoder


def create_vocoder_model(
    config: VocoderConfig,
    device: Optional[Device] = None,
    dtype: Optional[DataType] = None,
) -> PretsselVocoder:
    prosody_encoder_builder = EcapaTDNNBuilder(
        config.encoder_frontend_config.prosody_encoder_config,
        device=device,
        dtype=dtype,
    )
    return PretsselVocoderBuilder(
        config, prosody_encoder_builder, device=device, dtype=dtype
    ).build_model()