File size: 14,012 Bytes
563d86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Copyright (c) Meta Platforms, Inc. and affiliates
# All rights reserved.
#
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.

from typing import List, Optional, Tuple

import torch
import torch.nn.functional as F
from fairseq2.nn.padding import PaddingMask, to_padding_mask
from torch import Tensor
from torch.nn import Conv1d, LayerNorm, Module, ModuleList, ReLU, Sigmoid, Tanh, init


class ECAPA_TDNN(Module):
    """
    Represents the ECAPA-TDNN model described in paper:
    :cite:t`https://doi.org/10.48550/arxiv.2005.07143`.

    Arguments
    ---------
    :param channels:
        Output channels for TDNN/SERes2Net layer.
    :param kernel_sizes:
        List of kernel sizes for each layer.
    :param dilations:
        List of dilations for kernels in each layer.
    :param groups:
        List of groups for kernels in each layer.
    """

    def __init__(
        self,
        channels: List[int],
        kernel_sizes: List[int],
        dilations: List[int],
        attention_channels: int,
        res2net_scale: int,
        se_channels: int,
        global_context: bool,
        groups: List[int],
        embed_dim: int,
        input_dim: int,
    ):
        super().__init__()
        assert len(channels) == len(kernel_sizes) == len(dilations)
        self.channels = channels
        self.embed_dim = embed_dim
        self.blocks = ModuleList()

        self.blocks.append(
            TDNNBlock(
                input_dim,
                channels[0],
                kernel_sizes[0],
                dilations[0],
                groups[0],
            )
        )

        # SE-Res2Net layers
        for i in range(1, len(channels) - 1):
            self.blocks.append(
                SERes2NetBlock(
                    channels[i - 1],
                    channels[i],
                    res2net_scale=res2net_scale,
                    se_channels=se_channels,
                    kernel_size=kernel_sizes[i],
                    dilation=dilations[i],
                    groups=groups[i],
                )
            )

        # Multi-layer feature aggregation
        self.mfa = TDNNBlock(
            channels[-1],
            channels[-1],
            kernel_sizes[-1],
            dilations[-1],
            groups=groups[-1],
        )

        # Attentive Statistical Pooling
        self.asp = AttentiveStatisticsPooling(
            channels[-1],
            attention_channels=attention_channels,
            global_context=global_context,
        )
        self.asp_norm = LayerNorm(channels[-1] * 2, eps=1e-12)

        # Final linear transformation
        self.fc = Conv1d(
            in_channels=channels[-1] * 2,
            out_channels=embed_dim,
            kernel_size=1,
        )

        self.reset_parameters()

    def reset_parameters(self) -> None:
        """Reset the parameters and buffers of the module."""

        def encoder_init(m: Module) -> None:
            if isinstance(m, Conv1d):
                init.xavier_uniform_(m.weight, init.calculate_gain("relu"))

        self.apply(encoder_init)

    def forward(
        self,
        x: Tensor,
        padding_mask: Optional[PaddingMask] = None,
    ) -> Tensor:
        """Returns the embedding vector.

        Arguments
        ---------
        x : torch.Tensor
            Tensor of shape (batch, time, channel).
        """
        # Minimize transpose for efficiency
        x = x.transpose(1, 2)

        xl = []
        for layer in self.blocks:
            x = layer(x, padding_mask=padding_mask)
            xl.append(x)

        # Multi-layer feature aggregation
        x = torch.cat(xl[1:], dim=1)
        x = self.mfa(x)

        # Attentive Statistical Pooling
        x = self.asp(x, padding_mask=padding_mask)
        x = self.asp_norm(x.transpose(1, 2)).transpose(1, 2)

        # Final linear transformation
        x = self.fc(x)

        x = x.transpose(1, 2).squeeze(1)  # B x C
        return F.normalize(x, dim=-1)


class TDNNBlock(Module):
    """An implementation of TDNN.

    Arguments
    ----------
    :param in_channels : int
        Number of input channels.
    :param out_channels : int
        The number of output channels.
    :param kernel_size : int
        The kernel size of the TDNN blocks.
    :param dilation : int
        The dilation of the TDNN block.
    :param groups: int
        The groups size of the TDNN blocks.

    Example
    -------
    >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
    >>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1)
    >>> out_tensor = layer(inp_tensor).transpose(1, 2)
    >>> out_tensor.shape
    torch.Size([8, 120, 64])
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        dilation: int,
        groups: int = 1,
    ):
        super().__init__()
        self.conv = Conv1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            dilation=dilation,
            padding=dilation * (kernel_size - 1) // 2,
            groups=groups,
        )
        self.activation = ReLU()
        self.norm = LayerNorm(out_channels, eps=1e-12)

    def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
        """Processes the input tensor x and returns an output tensor."""
        x = self.activation(self.conv(x))

        return self.norm(x.transpose(1, 2)).transpose(1, 2)  # type: ignore[no-any-return]


class Res2NetBlock(Module):
    """An implementation of Res2NetBlock w/ dilation.

    Arguments
    ---------
    :param in_channels : int
        The number of channels expected in the input.
    :param out_channels : int
        The number of output channels.
    :param scale : int
        The scale of the Res2Net block.
    :param kernel_size: int
        The kernel size of the Res2Net block.
    :param dilation : int
        The dilation of the Res2Net block.

    Example
    -------
    >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
    >>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
    >>> out_tensor = layer(inp_tensor).transpose(1, 2)
    >>> out_tensor.shape
    torch.Size([8, 120, 64])
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        scale: int = 8,
        kernel_size: int = 3,
        dilation: int = 1,
    ):
        super().__init__()
        assert in_channels % scale == 0
        assert out_channels % scale == 0

        in_channel = in_channels // scale
        hidden_channel = out_channels // scale
        self.blocks = ModuleList(
            [
                TDNNBlock(
                    in_channel,
                    hidden_channel,
                    kernel_size=kernel_size,
                    dilation=dilation,
                )
                for i in range(scale - 1)
            ]
        )
        self.scale = scale

    def forward(self, x: Tensor) -> Tensor:
        """Processes the input tensor x and returns an output tensor."""
        y = []
        for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
            if i == 0:
                y_i = x_i
            elif i == 1:
                y_i = self.blocks[i - 1](x_i)
            else:
                y_i = self.blocks[i - 1](x_i + y_i)
            y.append(y_i)

        y_tensor = torch.cat(y, dim=1)
        return y_tensor


class SEBlock(Module):
    """An implementation of squeeze-and-excitation block.

    Arguments
    ---------
    in_channels : int
        The number of input channels.
    se_channels : int
        The number of output channels after squeeze.
    out_channels : int
        The number of output channels.
    """

    def __init__(
        self,
        in_channels: int,
        se_channels: int,
        out_channels: int,
    ):
        super().__init__()

        self.conv1 = Conv1d(
            in_channels=in_channels, out_channels=se_channels, kernel_size=1
        )
        self.relu = ReLU(inplace=True)
        self.conv2 = Conv1d(
            in_channels=se_channels, out_channels=out_channels, kernel_size=1
        )
        self.sigmoid = Sigmoid()

    def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
        """Processes the input tensor x and returns an output tensor."""
        if padding_mask is not None:
            mask = padding_mask.materialize().unsqueeze(1)
            s = (x * mask).sum(dim=2, keepdim=True) / padding_mask.seq_lens[
                :, None, None
            ]
        else:
            s = x.mean(dim=2, keepdim=True)

        s = self.relu(self.conv1(s))
        s = self.sigmoid(self.conv2(s))

        return s * x


class AttentiveStatisticsPooling(Module):
    """This class implements an attentive statistic pooling layer for each channel.
    It returns the concatenated mean and std of the input tensor.

    Arguments
    ---------
    channels: int
        The number of input channels.
    attention_channels: int
        The number of attention channels.
    """

    def __init__(
        self, channels: int, attention_channels: int = 128, global_context: bool = True
    ):
        super().__init__()

        self.eps = 1e-12
        self.global_context = global_context
        if global_context:
            self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
        else:
            self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)

        self.tanh = Tanh()
        self.conv = Conv1d(
            in_channels=attention_channels, out_channels=channels, kernel_size=1
        )

    def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
        """Calculates mean and std for a batch (input tensor).

        Arguments
        ---------
        x : torch.Tensor
            Tensor of shape [N, C, L].
        """
        L = x.shape[-1]

        def _compute_statistics(
            x: Tensor, m: Tensor, dim: int = 2, eps: float = self.eps
        ) -> Tuple[Tensor, Tensor]:
            mean = (m * x).sum(dim)
            std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
            return mean, std

        # if lengths is None:
        #     lengths = [x.shape[0]]

        # Make binary mask of shape [N, 1, L]
        # mask = to_padding_mask(lengths, max(lengths))
        if padding_mask is not None:
            mask = padding_mask.materialize()
        else:
            mask = to_padding_mask(torch.IntTensor([L]), L).repeat(x.shape[0], 1).to(x)
        mask = mask.unsqueeze(1)

        # Expand the temporal context of the pooling layer by allowing the
        # self-attention to look at global properties of the utterance.
        if self.global_context:
            # torch.std is unstable for backward computation
            # https://github.com/pytorch/pytorch/issues/4320
            total = mask.sum(dim=2, keepdim=True).to(x)
            mean, std = _compute_statistics(x, mask / total)
            mean = mean.unsqueeze(2).repeat(1, 1, L)
            std = std.unsqueeze(2).repeat(1, 1, L)
            attn = torch.cat([x, mean, std], dim=1)
        else:
            attn = x

        # Apply layers
        attn = self.conv(self.tanh(self.tdnn(attn)))

        # Filter out zero-paddings
        attn = attn.masked_fill(mask == 0, float("-inf"))

        attn = F.softmax(attn, dim=2)
        mean, std = _compute_statistics(x, attn)
        # Append mean and std of the batch
        pooled_stats = torch.cat((mean, std), dim=1)
        pooled_stats = pooled_stats.unsqueeze(2)

        return pooled_stats


class SERes2NetBlock(Module):
    """An implementation of building block in ECAPA-TDNN, i.e.,
    TDNN-Res2Net-TDNN-SEBlock.

    Arguments
    ----------
    out_channels: int
        The number of output channels.
    res2net_scale: int
        The scale of the Res2Net block.
    kernel_size: int
        The kernel size of the TDNN blocks.
    dilation: int
        The dilation of the Res2Net block.
    groups: int
    Number of blocked connections from input channels to output channels.

    Example
    -------
    >>> x = torch.rand(8, 120, 64).transpose(1, 2)
    >>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
    >>> out = conv(x).transpose(1, 2)
    >>> out.shape
    torch.Size([8, 120, 64])
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        res2net_scale: int = 8,
        se_channels: int = 128,
        kernel_size: int = 1,
        dilation: int = 1,
        groups: int = 1,
    ):
        super().__init__()
        self.out_channels = out_channels
        self.tdnn1 = TDNNBlock(
            in_channels,
            out_channels,
            kernel_size=1,
            dilation=1,
            groups=groups,
        )
        self.res2net_block = Res2NetBlock(
            out_channels,
            out_channels,
            res2net_scale,
            kernel_size,
            dilation,
        )
        self.tdnn2 = TDNNBlock(
            out_channels,
            out_channels,
            kernel_size=1,
            dilation=1,
            groups=groups,
        )
        self.se_block = SEBlock(out_channels, se_channels, out_channels)

        self.shortcut = None
        if in_channels != out_channels:
            self.shortcut = Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
            )

    def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
        """Processes the input tensor x and returns an output tensor."""
        residual = x
        if self.shortcut:
            residual = self.shortcut(x)

        x = self.tdnn1(x)
        x = self.res2net_block(x)
        x = self.tdnn2(x)
        x = self.se_block(x, padding_mask=padding_mask)

        return x + residual