Upload seamless_communication/models/generator/vocoder.py with huggingface_hub
Browse files
seamless_communication/models/generator/vocoder.py
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# MIT_LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Any, Dict, List, Literal, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from fairseq2.nn.embedding import Embedding, StandardEmbedding
|
12 |
+
from fairseq2.nn.padding import PaddingMask
|
13 |
+
from fairseq2.nn.position_encoder import PositionEncoder
|
14 |
+
from fairseq2.nn.projection import Projection
|
15 |
+
from fairseq2.typing import DataType, Device
|
16 |
+
from torch.nn import (
|
17 |
+
ELU,
|
18 |
+
BatchNorm1d,
|
19 |
+
Conv1d,
|
20 |
+
ConvTranspose1d,
|
21 |
+
Dropout,
|
22 |
+
Module,
|
23 |
+
ModuleList,
|
24 |
+
Parameter,
|
25 |
+
Sequential,
|
26 |
+
Tanh,
|
27 |
+
init,
|
28 |
+
)
|
29 |
+
from torch.nn.utils.weight_norm import remove_weight_norm, weight_norm
|
30 |
+
|
31 |
+
from seamless_communication.models.generator.ecapa_tdnn import ECAPA_TDNN
|
32 |
+
from seamless_communication.models.unity.fft_decoder import FeedForwardTransformer
|
33 |
+
from seamless_communication.models.unity.length_regulator import VarianceAdaptor
|
34 |
+
from seamless_communication.models.vocoder.hifigan import (
|
35 |
+
LRELU_SLOPE,
|
36 |
+
ResBlock,
|
37 |
+
init_weights,
|
38 |
+
)
|
39 |
+
|
40 |
+
from .streamable import (
|
41 |
+
StreamableConv1d,
|
42 |
+
StreamableConvTranspose1d,
|
43 |
+
StreamableLSTM,
|
44 |
+
StreamableResnetBlock,
|
45 |
+
)
|
46 |
+
|
47 |
+
ELU_PARAMS: Dict[str, Any] = {"alpha": 1.0}
|
48 |
+
|
49 |
+
|
50 |
+
class PretsselEncoderFrontend(Module):
|
51 |
+
"""
|
52 |
+
Represent Encoder frontend, including the prosody encoder and language embedding
|
53 |
+
"""
|
54 |
+
|
55 |
+
prosody_encoder: ECAPA_TDNN
|
56 |
+
embed_tokens: Embedding
|
57 |
+
embed_positions: PositionEncoder
|
58 |
+
pos_emb_alpha: Parameter
|
59 |
+
embed_lang: Embedding
|
60 |
+
dropout: Dropout
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
prosody_encoder: ECAPA_TDNN,
|
65 |
+
embed_tokens: Embedding,
|
66 |
+
embed_positions: PositionEncoder,
|
67 |
+
lang_to_index: Dict[str, int],
|
68 |
+
lang_embed_dim: Optional[int],
|
69 |
+
dropout_p: float,
|
70 |
+
device: Optional[Device] = None,
|
71 |
+
dtype: Optional[DataType] = None,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
self.prosody_encoder = prosody_encoder
|
76 |
+
|
77 |
+
self.embed_tokens = embed_tokens
|
78 |
+
|
79 |
+
self.embed_positions = embed_positions
|
80 |
+
self.pos_emb_alpha = Parameter(torch.ones(1, device=device, dtype=dtype))
|
81 |
+
|
82 |
+
self.lang_to_index = lang_to_index
|
83 |
+
|
84 |
+
if lang_embed_dim is not None:
|
85 |
+
self.embed_lang = StandardEmbedding(
|
86 |
+
len(lang_to_index), lang_embed_dim, device=device, dtype=dtype
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
self.register_module("embed_lang", None)
|
90 |
+
|
91 |
+
self.dropout = Dropout(dropout_p)
|
92 |
+
|
93 |
+
self.device = device
|
94 |
+
self.dtype = dtype
|
95 |
+
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
seqs: torch.Tensor,
|
99 |
+
padding_mask: Optional[PaddingMask],
|
100 |
+
prosody_input_seqs: torch.Tensor,
|
101 |
+
prosody_padding_mask: Optional[PaddingMask],
|
102 |
+
tgt_lang: str,
|
103 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
104 |
+
prosody_embs = self.prosody_encoder(
|
105 |
+
prosody_input_seqs,
|
106 |
+
prosody_padding_mask,
|
107 |
+
).unsqueeze(1)
|
108 |
+
|
109 |
+
if self.embed_lang is not None:
|
110 |
+
lang_index = self.lang_to_index[tgt_lang]
|
111 |
+
lang_index_tensor = (
|
112 |
+
torch.Tensor([lang_index]).to(seqs).repeat(seqs.size(0), 1)
|
113 |
+
)
|
114 |
+
lang_embeds = self.embed_lang(lang_index_tensor)
|
115 |
+
prosody_embs = torch.cat([prosody_embs, lang_embeds], dim=-1)
|
116 |
+
|
117 |
+
seqs = self.embed_tokens(seqs)
|
118 |
+
seqs += self.pos_emb_alpha * (self.embed_positions(seqs, padding_mask) - seqs)
|
119 |
+
seqs = self.dropout(seqs)
|
120 |
+
|
121 |
+
return seqs, prosody_embs
|
122 |
+
|
123 |
+
|
124 |
+
class PretsselDecoderFrontend(Module):
|
125 |
+
"""Represent Decoder frontend, including VarianceAdaptor & Positional embedding"""
|
126 |
+
|
127 |
+
variance_adaptor: VarianceAdaptor
|
128 |
+
embed_positions: PositionEncoder
|
129 |
+
pos_emb_alpha: Parameter
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
variance_adaptor: VarianceAdaptor,
|
134 |
+
embed_positions: PositionEncoder,
|
135 |
+
device: Optional[Device] = None,
|
136 |
+
dtype: Optional[DataType] = None,
|
137 |
+
):
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.variance_adaptor = variance_adaptor
|
141 |
+
self.embed_positions = embed_positions
|
142 |
+
self.pos_emb_alpha = Parameter(torch.ones(1, device=device, dtype=dtype))
|
143 |
+
|
144 |
+
self.device = device
|
145 |
+
self.dtype = dtype
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
seqs: torch.Tensor,
|
150 |
+
padding_mask: PaddingMask,
|
151 |
+
durations: Optional[torch.Tensor] = None,
|
152 |
+
duration_factor: float = 1.0,
|
153 |
+
min_duration: int = 0,
|
154 |
+
film_cond_emb: Optional[torch.Tensor] = None,
|
155 |
+
) -> Tuple[torch.Tensor, PaddingMask]:
|
156 |
+
seqs, padding_mask, _ = self.variance_adaptor(
|
157 |
+
seqs, padding_mask, durations, duration_factor, min_duration, film_cond_emb
|
158 |
+
)
|
159 |
+
|
160 |
+
seqs += self.pos_emb_alpha * (self.embed_positions(seqs, padding_mask) - seqs)
|
161 |
+
|
162 |
+
return seqs, padding_mask
|
163 |
+
|
164 |
+
|
165 |
+
class PretsselVocoder(Module):
|
166 |
+
"""The expressivity-preserving vocoder"""
|
167 |
+
|
168 |
+
encoder_frontend: PretsselEncoderFrontend
|
169 |
+
encoder: FeedForwardTransformer
|
170 |
+
decoder_frontend: PretsselDecoderFrontend
|
171 |
+
decoder: FeedForwardTransformer
|
172 |
+
final_proj: Projection
|
173 |
+
|
174 |
+
def __init__( # type: ignore[no-untyped-def]
|
175 |
+
self,
|
176 |
+
encoder_frontend: PretsselEncoderFrontend,
|
177 |
+
encoder: FeedForwardTransformer,
|
178 |
+
decoder_frontend: PretsselDecoderFrontend,
|
179 |
+
decoder: FeedForwardTransformer,
|
180 |
+
final_proj: Projection,
|
181 |
+
pn_n_channels: int,
|
182 |
+
pn_kernel_size: int,
|
183 |
+
pn_layers: int,
|
184 |
+
pn_dropout: float,
|
185 |
+
upsample_rates: List[int],
|
186 |
+
upsample_kernel_sizes: List[int],
|
187 |
+
upsample_initial_channel: int,
|
188 |
+
resblock_kernel_sizes: List[int],
|
189 |
+
resblock_dilation_sizes: List[List[int]],
|
190 |
+
mel_dim: int = 80,
|
191 |
+
add_ups_out_pad: bool = True,
|
192 |
+
channels: int = 1,
|
193 |
+
dimension: int = 128,
|
194 |
+
n_filters: int = 32,
|
195 |
+
ratios: List[int] = [8, 5, 4, 2],
|
196 |
+
norm: Literal[
|
197 |
+
"none", "weight_norm", "spectral_norm", "time_group_norm"
|
198 |
+
] = "none",
|
199 |
+
norm_params: Dict[str, Any] = {},
|
200 |
+
kernel_size: int = 7,
|
201 |
+
last_kernel_size: int = 7,
|
202 |
+
residual_kernel_size: int = 3,
|
203 |
+
causal: bool = False,
|
204 |
+
pad_mode: str = "constant",
|
205 |
+
true_skip: bool = True,
|
206 |
+
compress: int = 2,
|
207 |
+
lstm: int = 0,
|
208 |
+
disable_norm_outer_blocks: int = 0,
|
209 |
+
trim_right_ratio: float = 1.0,
|
210 |
+
gcmvn_mean: Optional[List[float]] = None,
|
211 |
+
gcmvn_std: Optional[List[float]] = None,
|
212 |
+
device: Optional[Device] = None,
|
213 |
+
dtype: Optional[DataType] = None,
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
self.encoder_frontend = encoder_frontend
|
217 |
+
self.encoder = encoder
|
218 |
+
self.decoder_frontend = decoder_frontend
|
219 |
+
self.decoder = decoder
|
220 |
+
self.final_proj = final_proj
|
221 |
+
mult = 1
|
222 |
+
stream_layers: List[Module] = [
|
223 |
+
StreamableConv1d(
|
224 |
+
channels,
|
225 |
+
mult * n_filters,
|
226 |
+
kernel_size,
|
227 |
+
norm="none" if disable_norm_outer_blocks >= 1 else norm,
|
228 |
+
norm_kwargs=norm_params,
|
229 |
+
causal=causal,
|
230 |
+
pad_mode=pad_mode,
|
231 |
+
activation=Tanh(),
|
232 |
+
device=device,
|
233 |
+
dtype=dtype,
|
234 |
+
)
|
235 |
+
]
|
236 |
+
# Downsample to from audio scale
|
237 |
+
for i, ratio in enumerate(list(reversed(ratios))):
|
238 |
+
block_norm = "none" if disable_norm_outer_blocks >= i + 2 else norm
|
239 |
+
stream_layers.append(
|
240 |
+
StreamableResnetBlock(
|
241 |
+
mult * n_filters,
|
242 |
+
kernel_sizes=[residual_kernel_size, 1],
|
243 |
+
dilations=[1, 1],
|
244 |
+
norm=block_norm,
|
245 |
+
norm_params=norm_params,
|
246 |
+
causal=causal,
|
247 |
+
pad_mode=pad_mode,
|
248 |
+
compress=compress,
|
249 |
+
true_skip=true_skip,
|
250 |
+
device=device,
|
251 |
+
dtype=dtype,
|
252 |
+
)
|
253 |
+
)
|
254 |
+
stream_layers.append(ELU(**ELU_PARAMS))
|
255 |
+
stream_layers.append(
|
256 |
+
StreamableConv1d(
|
257 |
+
mult * n_filters,
|
258 |
+
mult * n_filters * 2,
|
259 |
+
kernel_size=ratio * 2,
|
260 |
+
stride=ratio,
|
261 |
+
norm=block_norm,
|
262 |
+
norm_kwargs=norm_params,
|
263 |
+
causal=causal,
|
264 |
+
pad_mode=pad_mode,
|
265 |
+
device=device,
|
266 |
+
dtype=dtype,
|
267 |
+
)
|
268 |
+
)
|
269 |
+
mult *= 2
|
270 |
+
|
271 |
+
stream_layers.append(StreamableLSTM(mult * n_filters, num_layers=lstm))
|
272 |
+
stream_layers.append(ELU(**ELU_PARAMS))
|
273 |
+
n_blocks = len(ratios) + 2
|
274 |
+
stream_layers.append(
|
275 |
+
StreamableConv1d(
|
276 |
+
mult * n_filters,
|
277 |
+
dimension,
|
278 |
+
last_kernel_size,
|
279 |
+
norm="none" if disable_norm_outer_blocks == n_blocks else norm,
|
280 |
+
norm_kwargs=norm_params,
|
281 |
+
causal=causal,
|
282 |
+
pad_mode=pad_mode,
|
283 |
+
device=device,
|
284 |
+
dtype=dtype,
|
285 |
+
)
|
286 |
+
)
|
287 |
+
stream_layers.append(
|
288 |
+
StreamableConv1d(
|
289 |
+
dimension,
|
290 |
+
mult * n_filters,
|
291 |
+
kernel_size,
|
292 |
+
norm="none" if disable_norm_outer_blocks == n_blocks else norm,
|
293 |
+
norm_kwargs=norm_params,
|
294 |
+
causal=causal,
|
295 |
+
pad_mode=pad_mode,
|
296 |
+
device=device,
|
297 |
+
dtype=dtype,
|
298 |
+
)
|
299 |
+
)
|
300 |
+
stream_layers.append(
|
301 |
+
StreamableLSTM(
|
302 |
+
mult * n_filters, num_layers=lstm, device=device, dtype=dtype
|
303 |
+
)
|
304 |
+
)
|
305 |
+
|
306 |
+
# resample back to raw audio scale
|
307 |
+
for i, ratio in enumerate(ratios):
|
308 |
+
block_norm = (
|
309 |
+
"none" if disable_norm_outer_blocks >= n_blocks - (i + 1) else norm
|
310 |
+
)
|
311 |
+
stream_layers.append(ELU(**ELU_PARAMS))
|
312 |
+
stream_layers.append(
|
313 |
+
StreamableConvTranspose1d(
|
314 |
+
mult * n_filters,
|
315 |
+
mult * n_filters // 2,
|
316 |
+
kernel_size=ratio * 2,
|
317 |
+
stride=ratio,
|
318 |
+
norm=block_norm,
|
319 |
+
norm_kwargs=norm_params,
|
320 |
+
causal=causal,
|
321 |
+
trim_right_ratio=trim_right_ratio,
|
322 |
+
device=device,
|
323 |
+
dtype=dtype,
|
324 |
+
)
|
325 |
+
)
|
326 |
+
stream_layers.append(
|
327 |
+
StreamableResnetBlock(
|
328 |
+
mult * n_filters // 2,
|
329 |
+
kernel_sizes=[residual_kernel_size, 1],
|
330 |
+
dilations=[1, 1],
|
331 |
+
norm=block_norm,
|
332 |
+
norm_params=norm_params,
|
333 |
+
activation_params=ELU_PARAMS,
|
334 |
+
causal=causal,
|
335 |
+
pad_mode=pad_mode,
|
336 |
+
compress=compress,
|
337 |
+
true_skip=true_skip,
|
338 |
+
device=device,
|
339 |
+
dtype=dtype,
|
340 |
+
)
|
341 |
+
)
|
342 |
+
mult //= 2
|
343 |
+
|
344 |
+
stream_layers.append(ELU(**ELU_PARAMS))
|
345 |
+
stream_layers.append(
|
346 |
+
StreamableConv1d(
|
347 |
+
n_filters,
|
348 |
+
channels,
|
349 |
+
last_kernel_size,
|
350 |
+
norm="none" if disable_norm_outer_blocks >= 1 else norm,
|
351 |
+
norm_kwargs=norm_params,
|
352 |
+
causal=causal,
|
353 |
+
pad_mode=pad_mode,
|
354 |
+
device=device,
|
355 |
+
dtype=dtype,
|
356 |
+
)
|
357 |
+
)
|
358 |
+
self.n_streams = len(stream_layers)
|
359 |
+
chunk_size = self.n_streams // 4
|
360 |
+
stream_idx = 0
|
361 |
+
|
362 |
+
self.pn_layers = pn_layers
|
363 |
+
self.layers = ModuleList()
|
364 |
+
assert pn_kernel_size % 2 == 1
|
365 |
+
for i in range(pn_layers):
|
366 |
+
cur_layers = (
|
367 |
+
[
|
368 |
+
Conv1d(
|
369 |
+
mel_dim if i == 0 else pn_n_channels,
|
370 |
+
pn_n_channels if i < pn_layers - 1 else mel_dim,
|
371 |
+
kernel_size=pn_kernel_size,
|
372 |
+
padding="same",
|
373 |
+
device=device,
|
374 |
+
dtype=dtype,
|
375 |
+
),
|
376 |
+
BatchNorm1d(
|
377 |
+
pn_n_channels if i < pn_layers - 1 else mel_dim,
|
378 |
+
device=device,
|
379 |
+
dtype=dtype,
|
380 |
+
),
|
381 |
+
]
|
382 |
+
+ ([Tanh()] if i < pn_layers - 1 else [])
|
383 |
+
+ [Dropout(pn_dropout)]
|
384 |
+
)
|
385 |
+
self.layers.append(Sequential(*cur_layers))
|
386 |
+
self.reset_parameters()
|
387 |
+
self.layers.extend(stream_layers[:chunk_size])
|
388 |
+
stream_idx += chunk_size
|
389 |
+
self.layers.append(
|
390 |
+
weight_norm(
|
391 |
+
Conv1d(
|
392 |
+
mel_dim if mel_dim is not None else 80,
|
393 |
+
upsample_initial_channel,
|
394 |
+
7,
|
395 |
+
1,
|
396 |
+
padding="same",
|
397 |
+
device=device,
|
398 |
+
dtype=dtype,
|
399 |
+
)
|
400 |
+
)
|
401 |
+
)
|
402 |
+
self.layers.extend(stream_layers[stream_idx : stream_idx + chunk_size]) # noqa
|
403 |
+
stream_idx += chunk_size
|
404 |
+
|
405 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
406 |
+
self.num_upsamples = len(upsample_rates)
|
407 |
+
ups = ModuleList()
|
408 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
409 |
+
out_pad = u % 2 if add_ups_out_pad else 0
|
410 |
+
ups.append(
|
411 |
+
weight_norm(
|
412 |
+
ConvTranspose1d(
|
413 |
+
upsample_initial_channel // (2**i),
|
414 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
415 |
+
k,
|
416 |
+
u,
|
417 |
+
padding=(k - u) // 2 + out_pad,
|
418 |
+
output_padding=out_pad,
|
419 |
+
device=device,
|
420 |
+
dtype=dtype,
|
421 |
+
)
|
422 |
+
)
|
423 |
+
)
|
424 |
+
ups.apply(init_weights)
|
425 |
+
self.layers.extend(ups)
|
426 |
+
self.layers.extend(stream_layers[stream_idx : stream_idx + chunk_size]) # noqa
|
427 |
+
stream_idx += chunk_size
|
428 |
+
|
429 |
+
for i in range(self.num_upsamples):
|
430 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
431 |
+
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
|
432 |
+
self.layers.append(
|
433 |
+
ResBlock(
|
434 |
+
ch,
|
435 |
+
k,
|
436 |
+
d,
|
437 |
+
).to(device, dtype=dtype)
|
438 |
+
)
|
439 |
+
self.layers.extend(stream_layers[stream_idx:])
|
440 |
+
|
441 |
+
conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
442 |
+
conv_post.apply(init_weights)
|
443 |
+
self.layers.append(conv_post)
|
444 |
+
for u, k in zip(upsample_rates, upsample_kernel_sizes):
|
445 |
+
assert k == 2 * u, (k, u)
|
446 |
+
|
447 |
+
mean = torch.zeros((mel_dim,), dtype=torch.float)
|
448 |
+
scale = torch.zeros((mel_dim,), dtype=torch.float)
|
449 |
+
self.register_buffer("mean", mean)
|
450 |
+
self.register_buffer("scale", scale)
|
451 |
+
|
452 |
+
self.gcmvn_mean = torch.tensor(gcmvn_mean, device=device, dtype=dtype)
|
453 |
+
self.gcmvn_std = torch.tensor(gcmvn_std, device=device, dtype=dtype)
|
454 |
+
|
455 |
+
def reset_parameters(self) -> None:
|
456 |
+
for i in range(self.pn_layers):
|
457 |
+
init.xavier_uniform_(
|
458 |
+
self.layers[i][0].weight,
|
459 |
+
init.calculate_gain("tanh" if i < self.pn_layers - 1 else "linear"),
|
460 |
+
)
|
461 |
+
|
462 |
+
def gcmvn_denormalize(self, x: torch.Tensor) -> torch.Tensor:
|
463 |
+
if self.gcmvn_mean is None or self.gcmvn_std is None:
|
464 |
+
raise ValueError("gcmvn_mean is not set")
|
465 |
+
|
466 |
+
assert (
|
467 |
+
x.ndim == 3
|
468 |
+
and x.shape[2] == self.gcmvn_mean.shape[0]
|
469 |
+
and x.shape[2] == self.gcmvn_std.shape[0]
|
470 |
+
)
|
471 |
+
gcmvn_mean = self.gcmvn_mean.to(x)
|
472 |
+
gcmvn_std = self.gcmvn_std.to(x)
|
473 |
+
x = x * gcmvn_std.view(1, 1, -1).expand_as(x) # type: ignore[attr-defined]
|
474 |
+
return x + gcmvn_mean.view(1, 1, -1).expand_as(x) # type: ignore[attr-defined,no-any-return]
|
475 |
+
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
seqs: torch.Tensor,
|
479 |
+
tgt_lang: str,
|
480 |
+
prosody_input_seqs: torch.Tensor,
|
481 |
+
padding_mask: Optional[PaddingMask] = None,
|
482 |
+
prosody_padding_mask: Optional[PaddingMask] = None,
|
483 |
+
durations: Optional[torch.Tensor] = None,
|
484 |
+
duration_factor: float = 1.0,
|
485 |
+
min_duration: int = 0,
|
486 |
+
normalize_before: bool = True,
|
487 |
+
) -> List[torch.Tensor]:
|
488 |
+
# Here we are adding batch dimension for the pretssel
|
489 |
+
if seqs.ndim < 2:
|
490 |
+
seqs = seqs.unsqueeze(0)
|
491 |
+
if prosody_input_seqs.ndim < 3:
|
492 |
+
prosody_input_seqs = prosody_input_seqs.unsqueeze(0)
|
493 |
+
seqs, cond_embs = self.encoder_frontend(
|
494 |
+
seqs,
|
495 |
+
padding_mask,
|
496 |
+
prosody_input_seqs,
|
497 |
+
prosody_padding_mask,
|
498 |
+
tgt_lang,
|
499 |
+
)
|
500 |
+
seqs, padding_mask = self.encoder(seqs, padding_mask, cond_embs)
|
501 |
+
seqs, padding_mask = self.decoder_frontend(
|
502 |
+
seqs, padding_mask, durations, duration_factor, min_duration, cond_embs
|
503 |
+
)
|
504 |
+
seqs, padding_mask = self.decoder(seqs, padding_mask, cond_embs)
|
505 |
+
seqs = self.final_proj(seqs)
|
506 |
+
|
507 |
+
pn = seqs.transpose(1, 2) # B x T x C -> B x C x T
|
508 |
+
for i in range(self.pn_layers):
|
509 |
+
pn = self.layers[i](pn)
|
510 |
+
pn = pn.transpose(1, 2)
|
511 |
+
|
512 |
+
x = seqs + pn
|
513 |
+
x = self.gcmvn_denormalize(x)
|
514 |
+
|
515 |
+
wavs = []
|
516 |
+
for idx, _x in enumerate(x):
|
517 |
+
_x = _x[: durations[idx].sum()] # type: ignore[index]
|
518 |
+
if normalize_before:
|
519 |
+
_x = (_x - self.mean) / self.scale
|
520 |
+
|
521 |
+
_x = _x.transpose(1, 0).unsqueeze(0)
|
522 |
+
chunk_size = self.n_streams // 4
|
523 |
+
_x = self.layers[self.pn_layers + chunk_size](_x)
|
524 |
+
for i in range(self.num_upsamples):
|
525 |
+
_x = F.leaky_relu(_x, LRELU_SLOPE)
|
526 |
+
_x = self.layers[i + self.pn_layers + 1 + 2 * chunk_size](_x)
|
527 |
+
xs = None
|
528 |
+
for j in range(self.num_kernels):
|
529 |
+
if xs is None:
|
530 |
+
xs = self.layers[
|
531 |
+
i * self.num_kernels
|
532 |
+
+ j
|
533 |
+
+ self.pn_layers
|
534 |
+
+ 3 * chunk_size
|
535 |
+
+ self.num_upsamples
|
536 |
+
+ 1
|
537 |
+
](_x)
|
538 |
+
else:
|
539 |
+
xs += self.layers[
|
540 |
+
i * self.num_kernels
|
541 |
+
+ j
|
542 |
+
+ self.pn_layers
|
543 |
+
+ 3 * chunk_size
|
544 |
+
+ self.num_upsamples
|
545 |
+
+ 1
|
546 |
+
](_x)
|
547 |
+
_x = xs / self.num_kernels # type: ignore
|
548 |
+
_x = F.leaky_relu(_x)
|
549 |
+
_x = self.layers[
|
550 |
+
self.pn_layers
|
551 |
+
+ self.n_streams
|
552 |
+
+ self.num_upsamples * (1 + self.num_kernels)
|
553 |
+
+ 1
|
554 |
+
](_x)
|
555 |
+
skip_output = _x
|
556 |
+
h = skip_output
|
557 |
+
|
558 |
+
for i1 in range(self.pn_layers, self.pn_layers + chunk_size):
|
559 |
+
h = self.layers[i1](h)
|
560 |
+
i1 += 2
|
561 |
+
for i2 in range(i1, i1 + chunk_size):
|
562 |
+
h = self.layers[i2](h)
|
563 |
+
i2 = i2 + self.num_upsamples + 1
|
564 |
+
|
565 |
+
for i3 in range(i2, i2 + chunk_size):
|
566 |
+
h = self.layers[i3](h)
|
567 |
+
i3 = i3 + (self.num_upsamples * self.num_kernels) + 1
|
568 |
+
for i4 in range(i3, i3 + chunk_size):
|
569 |
+
h = self.layers[i4](h)
|
570 |
+
h = h[:, :, : _x.size(-1)]
|
571 |
+
|
572 |
+
wavs.append(0.8 * h + torch.tanh(skip_output).squeeze(0))
|
573 |
+
return wavs
|
574 |
+
|
575 |
+
def remove_weight_norm(self) -> None:
|
576 |
+
i = self.pn_layers + 1
|
577 |
+
for j in range(self.num_upsamples):
|
578 |
+
remove_weight_norm(self.layers[i + j])
|
579 |
+
for k in range(self.num_upsamples * self.num_kernels):
|
580 |
+
self.layers[i + j + k + 1].remove_weight_norm()
|
581 |
+
remove_weight_norm(self.layers[self.pn_layers])
|
582 |
+
remove_weight_norm(
|
583 |
+
self.layers[
|
584 |
+
self.pn_layers + 1 + self.num_upsamples * (1 + self.num_kernels)
|
585 |
+
]
|
586 |
+
)
|