Upload seamless_communication/models/generator/ecapa_tdnn.py with huggingface_hub
Browse files
seamless_communication/models/generator/ecapa_tdnn.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# MIT_LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import List, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from fairseq2.nn.padding import PaddingMask, to_padding_mask
|
12 |
+
from torch import Tensor
|
13 |
+
from torch.nn import Conv1d, LayerNorm, Module, ModuleList, ReLU, Sigmoid, Tanh, init
|
14 |
+
|
15 |
+
|
16 |
+
class ECAPA_TDNN(Module):
|
17 |
+
"""
|
18 |
+
Represents the ECAPA-TDNN model described in paper:
|
19 |
+
:cite:t`https://doi.org/10.48550/arxiv.2005.07143`.
|
20 |
+
|
21 |
+
Arguments
|
22 |
+
---------
|
23 |
+
:param channels:
|
24 |
+
Output channels for TDNN/SERes2Net layer.
|
25 |
+
:param kernel_sizes:
|
26 |
+
List of kernel sizes for each layer.
|
27 |
+
:param dilations:
|
28 |
+
List of dilations for kernels in each layer.
|
29 |
+
:param groups:
|
30 |
+
List of groups for kernels in each layer.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
channels: List[int],
|
36 |
+
kernel_sizes: List[int],
|
37 |
+
dilations: List[int],
|
38 |
+
attention_channels: int,
|
39 |
+
res2net_scale: int,
|
40 |
+
se_channels: int,
|
41 |
+
global_context: bool,
|
42 |
+
groups: List[int],
|
43 |
+
embed_dim: int,
|
44 |
+
input_dim: int,
|
45 |
+
):
|
46 |
+
super().__init__()
|
47 |
+
assert len(channels) == len(kernel_sizes) == len(dilations)
|
48 |
+
self.channels = channels
|
49 |
+
self.embed_dim = embed_dim
|
50 |
+
self.blocks = ModuleList()
|
51 |
+
|
52 |
+
self.blocks.append(
|
53 |
+
TDNNBlock(
|
54 |
+
input_dim,
|
55 |
+
channels[0],
|
56 |
+
kernel_sizes[0],
|
57 |
+
dilations[0],
|
58 |
+
groups[0],
|
59 |
+
)
|
60 |
+
)
|
61 |
+
|
62 |
+
# SE-Res2Net layers
|
63 |
+
for i in range(1, len(channels) - 1):
|
64 |
+
self.blocks.append(
|
65 |
+
SERes2NetBlock(
|
66 |
+
channels[i - 1],
|
67 |
+
channels[i],
|
68 |
+
res2net_scale=res2net_scale,
|
69 |
+
se_channels=se_channels,
|
70 |
+
kernel_size=kernel_sizes[i],
|
71 |
+
dilation=dilations[i],
|
72 |
+
groups=groups[i],
|
73 |
+
)
|
74 |
+
)
|
75 |
+
|
76 |
+
# Multi-layer feature aggregation
|
77 |
+
self.mfa = TDNNBlock(
|
78 |
+
channels[-1],
|
79 |
+
channels[-1],
|
80 |
+
kernel_sizes[-1],
|
81 |
+
dilations[-1],
|
82 |
+
groups=groups[-1],
|
83 |
+
)
|
84 |
+
|
85 |
+
# Attentive Statistical Pooling
|
86 |
+
self.asp = AttentiveStatisticsPooling(
|
87 |
+
channels[-1],
|
88 |
+
attention_channels=attention_channels,
|
89 |
+
global_context=global_context,
|
90 |
+
)
|
91 |
+
self.asp_norm = LayerNorm(channels[-1] * 2, eps=1e-12)
|
92 |
+
|
93 |
+
# Final linear transformation
|
94 |
+
self.fc = Conv1d(
|
95 |
+
in_channels=channels[-1] * 2,
|
96 |
+
out_channels=embed_dim,
|
97 |
+
kernel_size=1,
|
98 |
+
)
|
99 |
+
|
100 |
+
self.reset_parameters()
|
101 |
+
|
102 |
+
def reset_parameters(self) -> None:
|
103 |
+
"""Reset the parameters and buffers of the module."""
|
104 |
+
|
105 |
+
def encoder_init(m: Module) -> None:
|
106 |
+
if isinstance(m, Conv1d):
|
107 |
+
init.xavier_uniform_(m.weight, init.calculate_gain("relu"))
|
108 |
+
|
109 |
+
self.apply(encoder_init)
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
x: Tensor,
|
114 |
+
padding_mask: Optional[PaddingMask] = None,
|
115 |
+
) -> Tensor:
|
116 |
+
"""Returns the embedding vector.
|
117 |
+
|
118 |
+
Arguments
|
119 |
+
---------
|
120 |
+
x : torch.Tensor
|
121 |
+
Tensor of shape (batch, time, channel).
|
122 |
+
"""
|
123 |
+
# Minimize transpose for efficiency
|
124 |
+
x = x.transpose(1, 2)
|
125 |
+
|
126 |
+
xl = []
|
127 |
+
for layer in self.blocks:
|
128 |
+
x = layer(x, padding_mask=padding_mask)
|
129 |
+
xl.append(x)
|
130 |
+
|
131 |
+
# Multi-layer feature aggregation
|
132 |
+
x = torch.cat(xl[1:], dim=1)
|
133 |
+
x = self.mfa(x)
|
134 |
+
|
135 |
+
# Attentive Statistical Pooling
|
136 |
+
x = self.asp(x, padding_mask=padding_mask)
|
137 |
+
x = self.asp_norm(x.transpose(1, 2)).transpose(1, 2)
|
138 |
+
|
139 |
+
# Final linear transformation
|
140 |
+
x = self.fc(x)
|
141 |
+
|
142 |
+
x = x.transpose(1, 2).squeeze(1) # B x C
|
143 |
+
return F.normalize(x, dim=-1)
|
144 |
+
|
145 |
+
|
146 |
+
class TDNNBlock(Module):
|
147 |
+
"""An implementation of TDNN.
|
148 |
+
|
149 |
+
Arguments
|
150 |
+
----------
|
151 |
+
:param in_channels : int
|
152 |
+
Number of input channels.
|
153 |
+
:param out_channels : int
|
154 |
+
The number of output channels.
|
155 |
+
:param kernel_size : int
|
156 |
+
The kernel size of the TDNN blocks.
|
157 |
+
:param dilation : int
|
158 |
+
The dilation of the TDNN block.
|
159 |
+
:param groups: int
|
160 |
+
The groups size of the TDNN blocks.
|
161 |
+
|
162 |
+
Example
|
163 |
+
-------
|
164 |
+
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
165 |
+
>>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1)
|
166 |
+
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
|
167 |
+
>>> out_tensor.shape
|
168 |
+
torch.Size([8, 120, 64])
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
in_channels: int,
|
174 |
+
out_channels: int,
|
175 |
+
kernel_size: int,
|
176 |
+
dilation: int,
|
177 |
+
groups: int = 1,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
self.conv = Conv1d(
|
181 |
+
in_channels=in_channels,
|
182 |
+
out_channels=out_channels,
|
183 |
+
kernel_size=kernel_size,
|
184 |
+
dilation=dilation,
|
185 |
+
padding=dilation * (kernel_size - 1) // 2,
|
186 |
+
groups=groups,
|
187 |
+
)
|
188 |
+
self.activation = ReLU()
|
189 |
+
self.norm = LayerNorm(out_channels, eps=1e-12)
|
190 |
+
|
191 |
+
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
|
192 |
+
"""Processes the input tensor x and returns an output tensor."""
|
193 |
+
x = self.activation(self.conv(x))
|
194 |
+
|
195 |
+
return self.norm(x.transpose(1, 2)).transpose(1, 2) # type: ignore[no-any-return]
|
196 |
+
|
197 |
+
|
198 |
+
class Res2NetBlock(Module):
|
199 |
+
"""An implementation of Res2NetBlock w/ dilation.
|
200 |
+
|
201 |
+
Arguments
|
202 |
+
---------
|
203 |
+
:param in_channels : int
|
204 |
+
The number of channels expected in the input.
|
205 |
+
:param out_channels : int
|
206 |
+
The number of output channels.
|
207 |
+
:param scale : int
|
208 |
+
The scale of the Res2Net block.
|
209 |
+
:param kernel_size: int
|
210 |
+
The kernel size of the Res2Net block.
|
211 |
+
:param dilation : int
|
212 |
+
The dilation of the Res2Net block.
|
213 |
+
|
214 |
+
Example
|
215 |
+
-------
|
216 |
+
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2)
|
217 |
+
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3)
|
218 |
+
>>> out_tensor = layer(inp_tensor).transpose(1, 2)
|
219 |
+
>>> out_tensor.shape
|
220 |
+
torch.Size([8, 120, 64])
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
in_channels: int,
|
226 |
+
out_channels: int,
|
227 |
+
scale: int = 8,
|
228 |
+
kernel_size: int = 3,
|
229 |
+
dilation: int = 1,
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
assert in_channels % scale == 0
|
233 |
+
assert out_channels % scale == 0
|
234 |
+
|
235 |
+
in_channel = in_channels // scale
|
236 |
+
hidden_channel = out_channels // scale
|
237 |
+
self.blocks = ModuleList(
|
238 |
+
[
|
239 |
+
TDNNBlock(
|
240 |
+
in_channel,
|
241 |
+
hidden_channel,
|
242 |
+
kernel_size=kernel_size,
|
243 |
+
dilation=dilation,
|
244 |
+
)
|
245 |
+
for i in range(scale - 1)
|
246 |
+
]
|
247 |
+
)
|
248 |
+
self.scale = scale
|
249 |
+
|
250 |
+
def forward(self, x: Tensor) -> Tensor:
|
251 |
+
"""Processes the input tensor x and returns an output tensor."""
|
252 |
+
y = []
|
253 |
+
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)):
|
254 |
+
if i == 0:
|
255 |
+
y_i = x_i
|
256 |
+
elif i == 1:
|
257 |
+
y_i = self.blocks[i - 1](x_i)
|
258 |
+
else:
|
259 |
+
y_i = self.blocks[i - 1](x_i + y_i)
|
260 |
+
y.append(y_i)
|
261 |
+
|
262 |
+
y_tensor = torch.cat(y, dim=1)
|
263 |
+
return y_tensor
|
264 |
+
|
265 |
+
|
266 |
+
class SEBlock(Module):
|
267 |
+
"""An implementation of squeeze-and-excitation block.
|
268 |
+
|
269 |
+
Arguments
|
270 |
+
---------
|
271 |
+
in_channels : int
|
272 |
+
The number of input channels.
|
273 |
+
se_channels : int
|
274 |
+
The number of output channels after squeeze.
|
275 |
+
out_channels : int
|
276 |
+
The number of output channels.
|
277 |
+
"""
|
278 |
+
|
279 |
+
def __init__(
|
280 |
+
self,
|
281 |
+
in_channels: int,
|
282 |
+
se_channels: int,
|
283 |
+
out_channels: int,
|
284 |
+
):
|
285 |
+
super().__init__()
|
286 |
+
|
287 |
+
self.conv1 = Conv1d(
|
288 |
+
in_channels=in_channels, out_channels=se_channels, kernel_size=1
|
289 |
+
)
|
290 |
+
self.relu = ReLU(inplace=True)
|
291 |
+
self.conv2 = Conv1d(
|
292 |
+
in_channels=se_channels, out_channels=out_channels, kernel_size=1
|
293 |
+
)
|
294 |
+
self.sigmoid = Sigmoid()
|
295 |
+
|
296 |
+
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
|
297 |
+
"""Processes the input tensor x and returns an output tensor."""
|
298 |
+
if padding_mask is not None:
|
299 |
+
mask = padding_mask.materialize().unsqueeze(1)
|
300 |
+
s = (x * mask).sum(dim=2, keepdim=True) / padding_mask.seq_lens[
|
301 |
+
:, None, None
|
302 |
+
]
|
303 |
+
else:
|
304 |
+
s = x.mean(dim=2, keepdim=True)
|
305 |
+
|
306 |
+
s = self.relu(self.conv1(s))
|
307 |
+
s = self.sigmoid(self.conv2(s))
|
308 |
+
|
309 |
+
return s * x
|
310 |
+
|
311 |
+
|
312 |
+
class AttentiveStatisticsPooling(Module):
|
313 |
+
"""This class implements an attentive statistic pooling layer for each channel.
|
314 |
+
It returns the concatenated mean and std of the input tensor.
|
315 |
+
|
316 |
+
Arguments
|
317 |
+
---------
|
318 |
+
channels: int
|
319 |
+
The number of input channels.
|
320 |
+
attention_channels: int
|
321 |
+
The number of attention channels.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self, channels: int, attention_channels: int = 128, global_context: bool = True
|
326 |
+
):
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
self.eps = 1e-12
|
330 |
+
self.global_context = global_context
|
331 |
+
if global_context:
|
332 |
+
self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1)
|
333 |
+
else:
|
334 |
+
self.tdnn = TDNNBlock(channels, attention_channels, 1, 1)
|
335 |
+
|
336 |
+
self.tanh = Tanh()
|
337 |
+
self.conv = Conv1d(
|
338 |
+
in_channels=attention_channels, out_channels=channels, kernel_size=1
|
339 |
+
)
|
340 |
+
|
341 |
+
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
|
342 |
+
"""Calculates mean and std for a batch (input tensor).
|
343 |
+
|
344 |
+
Arguments
|
345 |
+
---------
|
346 |
+
x : torch.Tensor
|
347 |
+
Tensor of shape [N, C, L].
|
348 |
+
"""
|
349 |
+
L = x.shape[-1]
|
350 |
+
|
351 |
+
def _compute_statistics(
|
352 |
+
x: Tensor, m: Tensor, dim: int = 2, eps: float = self.eps
|
353 |
+
) -> Tuple[Tensor, Tensor]:
|
354 |
+
mean = (m * x).sum(dim)
|
355 |
+
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
|
356 |
+
return mean, std
|
357 |
+
|
358 |
+
# Make binary mask of shape [N, 1, L]
|
359 |
+
# mask = to_padding_mask(lengths, max(lengths))
|
360 |
+
if padding_mask is not None:
|
361 |
+
mask = padding_mask.materialize()
|
362 |
+
else:
|
363 |
+
mask = to_padding_mask(torch.IntTensor([L]), L).repeat(x.shape[0], 1).to(x)
|
364 |
+
mask = mask.unsqueeze(1)
|
365 |
+
|
366 |
+
# Expand the temporal context of the pooling layer by allowing the
|
367 |
+
# self-attention to look at global properties of the utterance.
|
368 |
+
if self.global_context:
|
369 |
+
# torch.std is unstable for backward computation
|
370 |
+
# https://github.com/pytorch/pytorch/issues/4320
|
371 |
+
total = mask.sum(dim=2, keepdim=True).to(x)
|
372 |
+
mean, std = _compute_statistics(x, mask / total)
|
373 |
+
mean = mean.unsqueeze(2).repeat(1, 1, L)
|
374 |
+
std = std.unsqueeze(2).repeat(1, 1, L)
|
375 |
+
attn = torch.cat([x, mean, std], dim=1)
|
376 |
+
else:
|
377 |
+
attn = x
|
378 |
+
|
379 |
+
# Apply layers
|
380 |
+
attn = self.conv(self.tanh(self.tdnn(attn)))
|
381 |
+
|
382 |
+
# Filter out zero-paddings
|
383 |
+
attn = attn.masked_fill(mask == 0, float("-inf"))
|
384 |
+
|
385 |
+
attn = F.softmax(attn, dim=2)
|
386 |
+
mean, std = _compute_statistics(x, attn)
|
387 |
+
# Append mean and std of the batch
|
388 |
+
pooled_stats = torch.cat((mean, std), dim=1)
|
389 |
+
pooled_stats = pooled_stats.unsqueeze(2)
|
390 |
+
|
391 |
+
return pooled_stats
|
392 |
+
|
393 |
+
|
394 |
+
class SERes2NetBlock(Module):
|
395 |
+
"""An implementation of building block in ECAPA-TDNN, i.e.,
|
396 |
+
TDNN-Res2Net-TDNN-SEBlock.
|
397 |
+
|
398 |
+
Arguments
|
399 |
+
----------
|
400 |
+
out_channels: int
|
401 |
+
The number of output channels.
|
402 |
+
res2net_scale: int
|
403 |
+
The scale of the Res2Net block.
|
404 |
+
kernel_size: int
|
405 |
+
The kernel size of the TDNN blocks.
|
406 |
+
dilation: int
|
407 |
+
The dilation of the Res2Net block.
|
408 |
+
groups: int
|
409 |
+
Number of blocked connections from input channels to output channels.
|
410 |
+
|
411 |
+
Example
|
412 |
+
-------
|
413 |
+
>>> x = torch.rand(8, 120, 64).transpose(1, 2)
|
414 |
+
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4)
|
415 |
+
>>> out = conv(x).transpose(1, 2)
|
416 |
+
>>> out.shape
|
417 |
+
torch.Size([8, 120, 64])
|
418 |
+
"""
|
419 |
+
|
420 |
+
def __init__(
|
421 |
+
self,
|
422 |
+
in_channels: int,
|
423 |
+
out_channels: int,
|
424 |
+
res2net_scale: int = 8,
|
425 |
+
se_channels: int = 128,
|
426 |
+
kernel_size: int = 1,
|
427 |
+
dilation: int = 1,
|
428 |
+
groups: int = 1,
|
429 |
+
):
|
430 |
+
super().__init__()
|
431 |
+
self.out_channels = out_channels
|
432 |
+
self.tdnn1 = TDNNBlock(
|
433 |
+
in_channels,
|
434 |
+
out_channels,
|
435 |
+
kernel_size=1,
|
436 |
+
dilation=1,
|
437 |
+
groups=groups,
|
438 |
+
)
|
439 |
+
self.res2net_block = Res2NetBlock(
|
440 |
+
out_channels,
|
441 |
+
out_channels,
|
442 |
+
res2net_scale,
|
443 |
+
kernel_size,
|
444 |
+
dilation,
|
445 |
+
)
|
446 |
+
self.tdnn2 = TDNNBlock(
|
447 |
+
out_channels,
|
448 |
+
out_channels,
|
449 |
+
kernel_size=1,
|
450 |
+
dilation=1,
|
451 |
+
groups=groups,
|
452 |
+
)
|
453 |
+
self.se_block = SEBlock(out_channels, se_channels, out_channels)
|
454 |
+
|
455 |
+
self.shortcut = None
|
456 |
+
if in_channels != out_channels:
|
457 |
+
self.shortcut = Conv1d(
|
458 |
+
in_channels=in_channels,
|
459 |
+
out_channels=out_channels,
|
460 |
+
kernel_size=1,
|
461 |
+
)
|
462 |
+
|
463 |
+
def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor:
|
464 |
+
"""Processes the input tensor x and returns an output tensor."""
|
465 |
+
residual = x
|
466 |
+
if self.shortcut:
|
467 |
+
residual = self.shortcut(x)
|
468 |
+
|
469 |
+
x = self.tdnn1(x)
|
470 |
+
x = self.res2net_block(x)
|
471 |
+
x = self.tdnn2(x)
|
472 |
+
x = self.se_block(x, padding_mask=padding_mask)
|
473 |
+
|
474 |
+
return x + residual
|