Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vocal-remover
|
2 |
+
|
3 |
+
[](https://github.com/tsurumeso/vocal-remover/releases/latest)
|
4 |
+
[](https://github.com/tsurumeso/vocal-remover/releases)
|
5 |
+
|
6 |
+
This is a deep-learning-based tool to extract instrumental track from your songs.
|
7 |
+
|
8 |
+
## Installation
|
9 |
+
|
10 |
+
### Getting vocal-remover
|
11 |
+
Download the latest version from [here](https://github.com/tsurumeso/vocal-remover/releases).
|
12 |
+
|
13 |
+
### Install PyTorch
|
14 |
+
**See**: [GET STARTED](https://pytorch.org/get-started/locally/)
|
15 |
+
|
16 |
+
### Install the other packages
|
17 |
+
```
|
18 |
+
cd vocal-remover
|
19 |
+
pip install -r requirements.txt
|
20 |
+
```
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
The following command separates the input into instrumental and vocal tracks. They are saved as `*_Instruments.wav` and `*_Vocals.wav`.
|
24 |
+
|
25 |
+
### Run on CPU
|
26 |
+
```
|
27 |
+
python inference.py --input path/to/an/audio/file
|
28 |
+
```
|
29 |
+
|
30 |
+
### Run on GPU
|
31 |
+
```
|
32 |
+
python inference.py --input path/to/an/audio/file --gpu 0
|
33 |
+
```
|
34 |
+
|
35 |
+
### Advanced options
|
36 |
+
`--tta` option performs Test-Time-Augmentation to improve the separation quality.
|
37 |
+
```
|
38 |
+
python inference.py --input path/to/an/audio/file --tta --gpu 0
|
39 |
+
```
|
40 |
+
|
41 |
+
<!-- `--postprocess` option masks instrumental part based on the vocals volume to improve the separation quality.
|
42 |
+
**Experimental Warning**: If you get any problems with this option, please disable it.
|
43 |
+
```
|
44 |
+
python inference.py --input path/to/an/audio/file --postprocess --gpu 0
|
45 |
+
``` -->
|
46 |
+
|
47 |
+
## Train your own model
|
48 |
+
|
49 |
+
### Place your dataset
|
50 |
+
```
|
51 |
+
path/to/dataset/
|
52 |
+
+- instruments/
|
53 |
+
| +- 01_foo_inst.wav
|
54 |
+
| +- 02_bar_inst.mp3
|
55 |
+
| +- ...
|
56 |
+
+- mixtures/
|
57 |
+
+- 01_foo_mix.wav
|
58 |
+
+- 02_bar_mix.mp3
|
59 |
+
+- ...
|
60 |
+
```
|
61 |
+
|
62 |
+
### Train a model
|
63 |
+
```
|
64 |
+
python train.py --dataset path/to/dataset --mixup_rate 0.5 --gpu 0
|
65 |
+
```
|
66 |
+
|
67 |
+
## References
|
68 |
+
- [1] Jansson et al., "Singing Voice Separation with Deep U-Net Convolutional Networks", https://ejhumphrey.com/assets/pdf/jansson2017singing.pdf
|
69 |
+
- [2] Takahashi et al., "Multi-scale Multi-band DenseNets for Audio Source Separation", https://arxiv.org/pdf/1706.09588.pdf
|
70 |
+
- [3] Takahashi et al., "MMDENSELSTM: AN EFFICIENT COMBINATION OF CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS FOR AUDIO SOURCE SEPARATION", https://arxiv.org/pdf/1805.02410.pdf
|
71 |
+
- [4] Choi et al., "PHASE-AWARE SPEECH ENHANCEMENT WITH DEEP COMPLEX U-NET", https://openreview.net/pdf?id=SkeRTsAcYm
|
72 |
+
- [5] Jansson et al., "Learned complex masks for multi-instrument source separation", https://arxiv.org/pdf/2103.12864.pdf
|
73 |
+
- [6] Liutkus et al., "The 2016 Signal Separation Evaluation Campaign", Latent Variable Analysis and Signal Separation - 12th International Conference
|