# Copyright (c) Meta Platforms, Inc. and affiliates # All rights reserved. # # This source code is licensed under the license found in the # MIT_LICENSE file in the root directory of this source tree. from typing import List, Optional, Tuple import torch import torch.nn.functional as F from fairseq2.nn.padding import PaddingMask, to_padding_mask from torch import Tensor from torch.nn import Conv1d, LayerNorm, Module, ModuleList, ReLU, Sigmoid, Tanh, init class ECAPA_TDNN(Module): """ Represents the ECAPA-TDNN model described in paper: :cite:t`https://doi.org/10.48550/arxiv.2005.07143`. Arguments --------- :param channels: Output channels for TDNN/SERes2Net layer. :param kernel_sizes: List of kernel sizes for each layer. :param dilations: List of dilations for kernels in each layer. :param groups: List of groups for kernels in each layer. """ def __init__( self, channels: List[int], kernel_sizes: List[int], dilations: List[int], attention_channels: int, res2net_scale: int, se_channels: int, global_context: bool, groups: List[int], embed_dim: int, input_dim: int, ): super().__init__() assert len(channels) == len(kernel_sizes) == len(dilations) self.channels = channels self.embed_dim = embed_dim self.blocks = ModuleList() self.blocks.append( TDNNBlock( input_dim, channels[0], kernel_sizes[0], dilations[0], groups[0], ) ) # SE-Res2Net layers for i in range(1, len(channels) - 1): self.blocks.append( SERes2NetBlock( channels[i - 1], channels[i], res2net_scale=res2net_scale, se_channels=se_channels, kernel_size=kernel_sizes[i], dilation=dilations[i], groups=groups[i], ) ) # Multi-layer feature aggregation self.mfa = TDNNBlock( channels[-1], channels[-1], kernel_sizes[-1], dilations[-1], groups=groups[-1], ) # Attentive Statistical Pooling self.asp = AttentiveStatisticsPooling( channels[-1], attention_channels=attention_channels, global_context=global_context, ) self.asp_norm = LayerNorm(channels[-1] * 2, eps=1e-12) # Final linear transformation self.fc = Conv1d( in_channels=channels[-1] * 2, out_channels=embed_dim, kernel_size=1, ) self.reset_parameters() def reset_parameters(self) -> None: """Reset the parameters and buffers of the module.""" def encoder_init(m: Module) -> None: if isinstance(m, Conv1d): init.xavier_uniform_(m.weight, init.calculate_gain("relu")) self.apply(encoder_init) def forward( self, x: Tensor, padding_mask: Optional[PaddingMask] = None, ) -> Tensor: """Returns the embedding vector. Arguments --------- x : torch.Tensor Tensor of shape (batch, time, channel). """ # Minimize transpose for efficiency x = x.transpose(1, 2) xl = [] for layer in self.blocks: x = layer(x, padding_mask=padding_mask) xl.append(x) # Multi-layer feature aggregation x = torch.cat(xl[1:], dim=1) x = self.mfa(x) # Attentive Statistical Pooling x = self.asp(x, padding_mask=padding_mask) x = self.asp_norm(x.transpose(1, 2)).transpose(1, 2) # Final linear transformation x = self.fc(x) x = x.transpose(1, 2).squeeze(1) # B x C return F.normalize(x, dim=-1) class TDNNBlock(Module): """An implementation of TDNN. Arguments ---------- :param in_channels : int Number of input channels. :param out_channels : int The number of output channels. :param kernel_size : int The kernel size of the TDNN blocks. :param dilation : int The dilation of the TDNN block. :param groups: int The groups size of the TDNN blocks. Example ------- >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) >>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1) >>> out_tensor = layer(inp_tensor).transpose(1, 2) >>> out_tensor.shape torch.Size([8, 120, 64]) """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int, dilation: int, groups: int = 1, ): super().__init__() self.conv = Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, dilation=dilation, padding=dilation * (kernel_size - 1) // 2, groups=groups, ) self.activation = ReLU() self.norm = LayerNorm(out_channels, eps=1e-12) def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: """Processes the input tensor x and returns an output tensor.""" x = self.activation(self.conv(x)) return self.norm(x.transpose(1, 2)).transpose(1, 2) # type: ignore[no-any-return] class Res2NetBlock(Module): """An implementation of Res2NetBlock w/ dilation. Arguments --------- :param in_channels : int The number of channels expected in the input. :param out_channels : int The number of output channels. :param scale : int The scale of the Res2Net block. :param kernel_size: int The kernel size of the Res2Net block. :param dilation : int The dilation of the Res2Net block. Example ------- >>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) >>> layer = Res2NetBlock(64, 64, scale=4, dilation=3) >>> out_tensor = layer(inp_tensor).transpose(1, 2) >>> out_tensor.shape torch.Size([8, 120, 64]) """ def __init__( self, in_channels: int, out_channels: int, scale: int = 8, kernel_size: int = 3, dilation: int = 1, ): super().__init__() assert in_channels % scale == 0 assert out_channels % scale == 0 in_channel = in_channels // scale hidden_channel = out_channels // scale self.blocks = ModuleList( [ TDNNBlock( in_channel, hidden_channel, kernel_size=kernel_size, dilation=dilation, ) for i in range(scale - 1) ] ) self.scale = scale def forward(self, x: Tensor) -> Tensor: """Processes the input tensor x and returns an output tensor.""" y = [] for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)): if i == 0: y_i = x_i elif i == 1: y_i = self.blocks[i - 1](x_i) else: y_i = self.blocks[i - 1](x_i + y_i) y.append(y_i) y_tensor = torch.cat(y, dim=1) return y_tensor class SEBlock(Module): """An implementation of squeeze-and-excitation block. Arguments --------- in_channels : int The number of input channels. se_channels : int The number of output channels after squeeze. out_channels : int The number of output channels. """ def __init__( self, in_channels: int, se_channels: int, out_channels: int, ): super().__init__() self.conv1 = Conv1d( in_channels=in_channels, out_channels=se_channels, kernel_size=1 ) self.relu = ReLU(inplace=True) self.conv2 = Conv1d( in_channels=se_channels, out_channels=out_channels, kernel_size=1 ) self.sigmoid = Sigmoid() def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: """Processes the input tensor x and returns an output tensor.""" if padding_mask is not None: mask = padding_mask.materialize().unsqueeze(1) s = (x * mask).sum(dim=2, keepdim=True) / padding_mask.seq_lens[ :, None, None ] else: s = x.mean(dim=2, keepdim=True) s = self.relu(self.conv1(s)) s = self.sigmoid(self.conv2(s)) return s * x class AttentiveStatisticsPooling(Module): """This class implements an attentive statistic pooling layer for each channel. It returns the concatenated mean and std of the input tensor. Arguments --------- channels: int The number of input channels. attention_channels: int The number of attention channels. """ def __init__( self, channels: int, attention_channels: int = 128, global_context: bool = True ): super().__init__() self.eps = 1e-12 self.global_context = global_context if global_context: self.tdnn = TDNNBlock(channels * 3, attention_channels, 1, 1) else: self.tdnn = TDNNBlock(channels, attention_channels, 1, 1) self.tanh = Tanh() self.conv = Conv1d( in_channels=attention_channels, out_channels=channels, kernel_size=1 ) def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: """Calculates mean and std for a batch (input tensor). Arguments --------- x : torch.Tensor Tensor of shape [N, C, L]. """ L = x.shape[-1] def _compute_statistics( x: Tensor, m: Tensor, dim: int = 2, eps: float = self.eps ) -> Tuple[Tensor, Tensor]: mean = (m * x).sum(dim) std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps)) return mean, std # if lengths is None: # lengths = [x.shape[0]] # Make binary mask of shape [N, 1, L] # mask = to_padding_mask(lengths, max(lengths)) if padding_mask is not None: mask = padding_mask.materialize() else: mask = to_padding_mask(torch.IntTensor([L]), L).repeat(x.shape[0], 1).to(x) mask = mask.unsqueeze(1) # Expand the temporal context of the pooling layer by allowing the # self-attention to look at global properties of the utterance. if self.global_context: # torch.std is unstable for backward computation # https://github.com/pytorch/pytorch/issues/4320 total = mask.sum(dim=2, keepdim=True).to(x) mean, std = _compute_statistics(x, mask / total) mean = mean.unsqueeze(2).repeat(1, 1, L) std = std.unsqueeze(2).repeat(1, 1, L) attn = torch.cat([x, mean, std], dim=1) else: attn = x # Apply layers attn = self.conv(self.tanh(self.tdnn(attn))) # Filter out zero-paddings attn = attn.masked_fill(mask == 0, float("-inf")) attn = F.softmax(attn, dim=2) mean, std = _compute_statistics(x, attn) # Append mean and std of the batch pooled_stats = torch.cat((mean, std), dim=1) pooled_stats = pooled_stats.unsqueeze(2) return pooled_stats class SERes2NetBlock(Module): """An implementation of building block in ECAPA-TDNN, i.e., TDNN-Res2Net-TDNN-SEBlock. Arguments ---------- out_channels: int The number of output channels. res2net_scale: int The scale of the Res2Net block. kernel_size: int The kernel size of the TDNN blocks. dilation: int The dilation of the Res2Net block. groups: int Number of blocked connections from input channels to output channels. Example ------- >>> x = torch.rand(8, 120, 64).transpose(1, 2) >>> conv = SERes2NetBlock(64, 64, res2net_scale=4) >>> out = conv(x).transpose(1, 2) >>> out.shape torch.Size([8, 120, 64]) """ def __init__( self, in_channels: int, out_channels: int, res2net_scale: int = 8, se_channels: int = 128, kernel_size: int = 1, dilation: int = 1, groups: int = 1, ): super().__init__() self.out_channels = out_channels self.tdnn1 = TDNNBlock( in_channels, out_channels, kernel_size=1, dilation=1, groups=groups, ) self.res2net_block = Res2NetBlock( out_channels, out_channels, res2net_scale, kernel_size, dilation, ) self.tdnn2 = TDNNBlock( out_channels, out_channels, kernel_size=1, dilation=1, groups=groups, ) self.se_block = SEBlock(out_channels, se_channels, out_channels) self.shortcut = None if in_channels != out_channels: self.shortcut = Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, ) def forward(self, x: Tensor, padding_mask: Optional[PaddingMask] = None) -> Tensor: """Processes the input tensor x and returns an output tensor.""" residual = x if self.shortcut: residual = self.shortcut(x) x = self.tdnn1(x) x = self.res2net_block(x) x = self.tdnn2(x) x = self.se_block(x, padding_mask=padding_mask) return x + residual