from transformers import AutoTokenizer, AutoModelForCausalLM from peft import get_peft_model, LoraConfig from safetensors.torch import load_file from huggingface_hub import hf_hub_download import torch import os token = os.getenv("HUGGINGFACE_HUB_TOKEN") class EndpointHandler: def __init__(self, path=""): self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=token) base_model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16, device_map="auto", token=token ) lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) self.model = get_peft_model(base_model, lora_config) adapter_path = hf_hub_download( repo_id="vignesh0007/Anime-Gen-Llama-2-7B", filename="adapter_model.safetensors", repo_type="model", token=token ) lora_state = load_file(adapter_path) self.model.load_state_dict(lora_state, strict=False) self.model.eval() def __call__(self, data): inputs = data.get("inputs", "") tokens = self.tokenizer(inputs, return_tensors="pt").to(self.model.device) with torch.no_grad(): outputs = self.model.generate( **tokens, max_new_tokens=256, temperature=0.8, top_p=0.95, do_sample=True ) return self.tokenizer.decode(outputs[0], skip_special_tokens=True)