--- library_name: transformers license: apache-2.0 base_model: vikas117/finetuned-ai-real-beit tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-ai-real-beit results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9338842975206612 --- # finetuned-ai-real-beit This model is a fine-tuned version of [vikas117/finetuned-ai-real-beit](https://huggingface.co/vikas117/finetuned-ai-real-beit) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2805 - Accuracy: 0.9339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4366 | 0.4545 | 10 | 0.0494 | 0.9752 | | 0.0713 | 0.9091 | 20 | 0.1101 | 0.9587 | | 0.0302 | 1.3636 | 30 | 0.2225 | 0.9587 | | 0.0531 | 1.8182 | 40 | 0.2805 | 0.9339 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0