File size: 1,588 Bytes
cc79676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
language:
- vi
---
# VinaLlama2-14B Beta
GGUF Here: [VinaLlama2-14B-GGUF](https://huggingface.co/qnguyen3/14b-gguf)
**Top Features**:
- **Context Length**: 32,768 tokens.
- **VERY GOOD** at reasoning, mathematics and creative writing.
- Works with **Langchain Agent** out-of-the-box.
**Known Issues**
- Still a bit struggling with Vietnamese fact (Hoang Sa & Truong Sa, Historical questions).
- Hallucination when reasoning.
- Can't do Vi-En/En-Vi translation (yet)!
Quick use:
VRAM Requirement: ~20GB
```bash
pip install transformers accelerate
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"vilm/VinaLlama2-14B",
torch_dtype='auto',
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
prompt = "Một cộng một bằng mấy?"
messages = [
{"role": "system", "content": "Bạn là trợ lí AI hữu ích."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
temperature=0.25,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
``` |