vimalgupta commited on
Commit
537c0b8
·
1 Parent(s): f162bc7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.725
28
  - name: Recall
29
  type: recall
30
- value: 0.7631578947368421
31
  - name: F1
32
  type: f1
33
- value: 0.7435897435897436
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.7407407407407407
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 1.9129
47
- - Precision: 0.725
48
- - Recall: 0.7632
49
- - F1: 0.7436
50
- - Accuracy: 0.7407
51
 
52
  ## Model description
53
 
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 125.0 | 250 | 1.2365 | 0.7195 | 0.7763 | 0.7468 | 0.7556 |
82
- | 0.8612 | 250.0 | 500 | 1.4859 | 0.7375 | 0.7763 | 0.7564 | 0.7481 |
83
- | 0.8612 | 375.0 | 750 | 1.6108 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
84
- | 0.0297 | 500.0 | 1000 | 1.7046 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
85
- | 0.0297 | 625.0 | 1250 | 1.7805 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
86
- | 0.0134 | 750.0 | 1500 | 1.8187 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
87
- | 0.0134 | 875.0 | 1750 | 1.8624 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
88
- | 0.0089 | 1000.0 | 2000 | 1.8866 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
89
- | 0.0089 | 1125.0 | 2250 | 1.9056 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
90
- | 0.0073 | 1250.0 | 2500 | 1.9129 | 0.725 | 0.7632 | 0.7436 | 0.7407 |
91
 
92
 
93
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.717948717948718
28
  - name: Recall
29
  type: recall
30
+ value: 0.7368421052631579
31
  - name: F1
32
  type: f1
33
+ value: 0.7272727272727273
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.7333333333333333
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 1.8321
47
+ - Precision: 0.7179
48
+ - Recall: 0.7368
49
+ - F1: 0.7273
50
+ - Accuracy: 0.7333
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 125.0 | 250 | 1.2027 | 0.7564 | 0.7763 | 0.7662 | 0.7481 |
82
+ | 0.8449 | 250.0 | 500 | 1.3990 | 0.7089 | 0.7368 | 0.7226 | 0.7333 |
83
+ | 0.8449 | 375.0 | 750 | 1.5343 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
84
+ | 0.0296 | 500.0 | 1000 | 1.6144 | 0.75 | 0.75 | 0.75 | 0.7407 |
85
+ | 0.0296 | 625.0 | 1250 | 1.6898 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
86
+ | 0.0134 | 750.0 | 1500 | 1.7402 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
87
+ | 0.0134 | 875.0 | 1750 | 1.7888 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
88
+ | 0.0089 | 1000.0 | 2000 | 1.8041 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
89
+ | 0.0089 | 1125.0 | 2250 | 1.8209 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
90
+ | 0.0073 | 1250.0 | 2500 | 1.8321 | 0.7179 | 0.7368 | 0.7273 | 0.7333 |
91
 
92
 
93
  ### Framework versions