File size: 6,061 Bytes
5388b8d 2b51e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
#### Table of contents
1. [Introduction](#introduction)
2. [Using PhoBERT with `transformers`](#transformers)
- [Installation](#install2)
- [Pre-trained models](#models2)
- [Example usage](#usage2)
3. [Using PhoBERT with `fairseq`](#fairseq)
4. [Notes](#vncorenlp)
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam):
- Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
- PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
The general architecture and experimental results of PhoBERT can be found in our [paper](https://www.aclweb.org/anthology/2020.findings-emnlp.92/):
@inproceedings{phobert,
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
year = {2020},
pages = {1037--1042}
}
**Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
## <a name="transformers"></a> Using PhoBERT with `transformers`
### Installation <a name="install2"></a>
- Install `transformers` with pip: `pip install transformers`, or [install `transformers` from source](https://huggingface.co/docs/transformers/installation#installing-from-source). <br />
Note that we merged a slow tokenizer for PhoBERT into the main `transformers` branch. The process of merging a fast tokenizer for PhoBERT is in the discussion, as mentioned in [this pull request](https://github.com/huggingface/transformers/pull/17254#issuecomment-1133932067). If users would like to utilize the fast tokenizer, the users might install `transformers` as follows:
```
git clone --single-branch --branch fast_tokenizers_BARTpho_PhoBERT_BERTweet https://github.com/datquocnguyen/transformers.git
cd transformers
pip3 install -e .
```
- Install `tokenizers` with pip: `pip3 install tokenizers`
### Pre-trained models <a name="models2"></a>
Model | #params | Arch. | Max length | Pre-training data
---|---|---|---|---
`vinai/phobert-base` | 135M | base | 256 | 20GB of Wikipedia and News texts
`vinai/phobert-large` | 370M | large | 256 | 20GB of Wikipedia and News texts
`vinai/phobert-base-v2` | 135M | base | 256 | 20GB of Wikipedia and News texts + 120GB of texts from OSCAR-2301
### Example usage <a name="usage2"></a>
```python
import torch
from transformers import AutoModel, AutoTokenizer
phobert = AutoModel.from_pretrained("vinai/phobert-base-v2")
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
sentence = 'Chúng_tôi là những nghiên_cứu_viên .'
input_ids = torch.tensor([tokenizer.encode(sentence)])
with torch.no_grad():
features = phobert(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+:
# from transformers import TFAutoModel
# phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
```
## <a name="fairseq"></a> Using PhoBERT with `fairseq`
Please see details at [HERE](https://github.com/VinAIResearch/PhoBERT/blob/master/README_fairseq.md)!
## <a name="vncorenlp"></a> Notes
In case the input texts are `raw`, i.e. without word segmentation, a word segmenter must be applied to produce word-segmented texts before feeding to PhoBERT. As PhoBERT employed the [RDRSegmenter](https://github.com/datquocnguyen/RDRsegmenter) from [VnCoreNLP](https://github.com/vncorenlp/VnCoreNLP) to pre-process the pre-training data (including [Vietnamese tone normalization](https://github.com/VinAIResearch/BARTpho/blob/main/VietnameseToneNormalization.md) and word and sentence segmentation), it is recommended to also use the same word segmenter for PhoBERT-based downstream applications w.r.t. the input raw texts.
#### Installation
pip install py_vncorenlp
#### Example usage <a name="example"></a>
```python
import py_vncorenlp
# Automatically download VnCoreNLP components from the original repository
# and save them in some local machine folder
py_vncorenlp.download_model(save_dir='/absolute/path/to/vncorenlp')
# Load the word and sentence segmentation component
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/absolute/path/to/vncorenlp')
text = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây."
output = rdrsegmenter.word_segment(text)
print(output)
# ['Ông Nguyễn_Khắc_Chúc đang làm_việc tại Đại_học Quốc_gia Hà_Nội .', 'Bà Lan , vợ ông Chúc , cũng làm_việc tại đây .']
```
## License
Copyright (c) 2023 VinAI Research
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. |