vince62s commited on
Commit
001a6f5
·
verified ·
1 Parent(s): 61581ab

Delete modelling_xlm_roberta_xl.py

Browse files
Files changed (1) hide show
  1. modelling_xlm_roberta_xl.py +0 -1777
modelling_xlm_roberta_xl.py DELETED
@@ -1,1777 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """PyTorch XLM RoBERTa xl,xxl model."""
16
-
17
- import math
18
- from typing import List, Optional, Tuple, Union
19
-
20
- import torch
21
- import torch.utils.checkpoint
22
- from torch import nn
23
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
24
- from torch.nn import Parameter, ParameterList
25
-
26
- from transformers.activations import ACT2FN, gelu
27
- from transformers.modeling_outputs import (
28
- BaseModelOutputWithPastAndCrossAttentions,
29
- BaseModelOutputWithPoolingAndCrossAttentions,
30
- CausalLMOutputWithCrossAttentions,
31
- MaskedLMOutput,
32
- MultipleChoiceModelOutput,
33
- QuestionAnsweringModelOutput,
34
- SequenceClassifierOutput,
35
- TokenClassifierOutput,
36
- )
37
- from transformers import PreTrainedModel
38
- from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
39
- from transformers.utils import (
40
- add_code_sample_docstrings,
41
- add_start_docstrings,
42
- add_start_docstrings_to_model_forward,
43
- logging,
44
- replace_return_docstrings,
45
- )
46
- from .configuration_xlm_roberta_xl import XLMRobertaXLConfig
47
-
48
-
49
- logger = logging.get_logger(__name__)
50
-
51
- _CHECKPOINT_FOR_DOC = "facebook/xlm-roberta-xl"
52
- _CONFIG_FOR_DOC = "XLMRobertaXLConfig"
53
-
54
-
55
- #from ..deprecated._archive_maps import XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
56
-
57
-
58
- class XLMRobertaXLEmbeddings(nn.Module):
59
- """
60
- Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
61
- """
62
-
63
- def __init__(self, config):
64
- super().__init__()
65
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
66
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
67
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
68
-
69
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
70
- # any TensorFlow checkpoint file
71
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
72
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
73
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
74
- self.register_buffer(
75
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
76
- )
77
- self.register_buffer(
78
- "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
79
- )
80
-
81
- # End copy
82
- self.padding_idx = config.pad_token_id
83
- self.position_embeddings = nn.Embedding(
84
- config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
85
- )
86
-
87
- def forward(
88
- self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
89
- ):
90
- if position_ids is None:
91
- if input_ids is not None:
92
- # Create the position ids from the input token ids. Any padded tokens remain padded.
93
- position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
94
- else:
95
- position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
96
-
97
- if input_ids is not None:
98
- input_shape = input_ids.size()
99
- else:
100
- input_shape = inputs_embeds.size()[:-1]
101
-
102
- seq_length = input_shape[1]
103
-
104
- # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
105
- # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
106
- # issue #5664
107
- if token_type_ids is None:
108
- if hasattr(self, "token_type_ids"):
109
- buffered_token_type_ids = self.token_type_ids[:, :seq_length]
110
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
111
- token_type_ids = buffered_token_type_ids_expanded
112
- else:
113
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
114
-
115
- if inputs_embeds is None:
116
- inputs_embeds = self.word_embeddings(input_ids)
117
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
118
-
119
- embeddings = inputs_embeds + token_type_embeddings
120
- if self.position_embedding_type == "absolute":
121
- position_embeddings = self.position_embeddings(position_ids)
122
- embeddings += position_embeddings
123
-
124
- embeddings = self.dropout(embeddings)
125
- return embeddings
126
-
127
- # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds
128
- def create_position_ids_from_inputs_embeds(self, inputs_embeds):
129
- """
130
- We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
131
-
132
- Args:
133
- inputs_embeds: torch.Tensor
134
-
135
- Returns: torch.Tensor
136
- """
137
- input_shape = inputs_embeds.size()[:-1]
138
- sequence_length = input_shape[1]
139
-
140
- position_ids = torch.arange(
141
- self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
142
- )
143
- return position_ids.unsqueeze(0).expand(input_shape)
144
-
145
-
146
- # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->XLMRobertaXL
147
- class XLMRobertaXLSelfAttention(nn.Module):
148
- def __init__(self, config, position_embedding_type=None):
149
- super().__init__()
150
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
151
- raise ValueError(
152
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
153
- f"heads ({config.num_attention_heads})"
154
- )
155
-
156
- self.num_attention_heads = config.num_attention_heads
157
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
158
- self.all_head_size = self.num_attention_heads * self.attention_head_size
159
-
160
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
161
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
162
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
163
-
164
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
165
- self.position_embedding_type = position_embedding_type or getattr(
166
- config, "position_embedding_type", "absolute"
167
- )
168
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
169
- self.max_position_embeddings = config.max_position_embeddings
170
- self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
171
-
172
- self.is_decoder = config.is_decoder
173
-
174
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
175
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
176
- x = x.view(new_x_shape)
177
- return x.permute(0, 2, 1, 3)
178
-
179
- def forward(
180
- self,
181
- hidden_states: torch.Tensor,
182
- attention_mask: Optional[torch.FloatTensor] = None,
183
- head_mask: Optional[torch.FloatTensor] = None,
184
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
185
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
186
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
187
- output_attentions: Optional[bool] = False,
188
- ) -> Tuple[torch.Tensor]:
189
- mixed_query_layer = self.query(hidden_states)
190
-
191
- # If this is instantiated as a cross-attention module, the keys
192
- # and values come from an encoder; the attention mask needs to be
193
- # such that the encoder's padding tokens are not attended to.
194
- is_cross_attention = encoder_hidden_states is not None
195
-
196
- if is_cross_attention and past_key_value is not None:
197
- # reuse k,v, cross_attentions
198
- key_layer = past_key_value[0]
199
- value_layer = past_key_value[1]
200
- attention_mask = encoder_attention_mask
201
- elif is_cross_attention:
202
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
203
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
204
- attention_mask = encoder_attention_mask
205
- elif past_key_value is not None:
206
- key_layer = self.transpose_for_scores(self.key(hidden_states))
207
- value_layer = self.transpose_for_scores(self.value(hidden_states))
208
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
209
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
210
- else:
211
- key_layer = self.transpose_for_scores(self.key(hidden_states))
212
- value_layer = self.transpose_for_scores(self.value(hidden_states))
213
-
214
- query_layer = self.transpose_for_scores(mixed_query_layer)
215
-
216
- use_cache = past_key_value is not None
217
- if self.is_decoder:
218
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
219
- # Further calls to cross_attention layer can then reuse all cross-attention
220
- # key/value_states (first "if" case)
221
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
222
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
223
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
224
- # if encoder bi-directional self-attention `past_key_value` is always `None`
225
- past_key_value = (key_layer, value_layer)
226
-
227
- # Take the dot product between "query" and "key" to get the raw attention scores.
228
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
229
-
230
- if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
231
- query_length, key_length = query_layer.shape[2], key_layer.shape[2]
232
- if use_cache:
233
- position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
234
- -1, 1
235
- )
236
- else:
237
- position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
238
- position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
239
- distance = position_ids_l - position_ids_r
240
-
241
- positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
242
- positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
243
-
244
- if self.position_embedding_type == "relative_key":
245
- relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
246
- attention_scores = attention_scores + relative_position_scores
247
- elif self.position_embedding_type == "relative_key_query":
248
- relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
249
- relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
250
- attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
251
-
252
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
253
- if attention_mask is not None:
254
- # Apply the attention mask is (precomputed for all layers in XLMRobertaXLModel forward() function)
255
- attention_scores = attention_scores + attention_mask
256
-
257
- # Normalize the attention scores to probabilities.
258
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
259
-
260
- # This is actually dropping out entire tokens to attend to, which might
261
- # seem a bit unusual, but is taken from the original Transformer paper.
262
- attention_probs = self.dropout(attention_probs)
263
-
264
- # Mask heads if we want to
265
- if head_mask is not None:
266
- attention_probs = attention_probs * head_mask
267
-
268
- context_layer = torch.matmul(attention_probs, value_layer)
269
-
270
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
271
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
272
- context_layer = context_layer.view(new_context_layer_shape)
273
-
274
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
275
-
276
- if self.is_decoder:
277
- outputs = outputs + (past_key_value,)
278
- return outputs
279
-
280
-
281
- class XLMRobertaXLSelfOutput(nn.Module):
282
- def __init__(self, config):
283
- super().__init__()
284
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
285
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
286
-
287
- def forward(self, hidden_states, input_tensor):
288
- hidden_states = self.dense(hidden_states)
289
- hidden_states = self.dropout(hidden_states)
290
- hidden_states = hidden_states + input_tensor
291
- return hidden_states
292
-
293
-
294
- class XLMRobertaXLAttention(nn.Module):
295
- def __init__(self, config, position_embedding_type=None):
296
- super().__init__()
297
- self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
298
- self.self = XLMRobertaXLSelfAttention(config, position_embedding_type=position_embedding_type)
299
- self.output = XLMRobertaXLSelfOutput(config)
300
- self.pruned_heads = set()
301
-
302
- def prune_heads(self, heads):
303
- if len(heads) == 0:
304
- return
305
- heads, index = find_pruneable_heads_and_indices(
306
- heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
307
- )
308
-
309
- # Prune linear layers
310
- self.self.query = prune_linear_layer(self.self.query, index)
311
- self.self.key = prune_linear_layer(self.self.key, index)
312
- self.self.value = prune_linear_layer(self.self.value, index)
313
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
314
-
315
- # Update hyper params and store pruned heads
316
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
317
- self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
318
- self.pruned_heads = self.pruned_heads.union(heads)
319
-
320
- def forward(
321
- self,
322
- hidden_states,
323
- attention_mask=None,
324
- head_mask=None,
325
- encoder_hidden_states=None,
326
- encoder_attention_mask=None,
327
- past_key_value=None,
328
- output_attentions=False,
329
- ):
330
- intermediate = self.self_attn_layer_norm(hidden_states)
331
- self_outputs = self.self(
332
- intermediate,
333
- attention_mask,
334
- head_mask,
335
- encoder_hidden_states,
336
- encoder_attention_mask,
337
- past_key_value,
338
- output_attentions,
339
- )
340
- attention_output = self.output(self_outputs[0], hidden_states)
341
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
342
- return outputs
343
-
344
-
345
- # Copied from transformers.models.bert.modeling_bert.BertIntermediate
346
- class XLMRobertaXLIntermediate(nn.Module):
347
- def __init__(self, config):
348
- super().__init__()
349
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
350
- if isinstance(config.hidden_act, str):
351
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
352
- else:
353
- self.intermediate_act_fn = config.hidden_act
354
-
355
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
356
- hidden_states = self.dense(hidden_states)
357
- hidden_states = self.intermediate_act_fn(hidden_states)
358
- return hidden_states
359
-
360
-
361
- class XLMRobertaXLOutput(nn.Module):
362
- def __init__(self, config):
363
- super().__init__()
364
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
365
-
366
- def forward(self, hidden_states, input_tensor):
367
- hidden_states = self.dense(hidden_states)
368
- hidden_states = hidden_states + input_tensor
369
- return hidden_states
370
-
371
-
372
- class XLMRobertaXLLayer(nn.Module):
373
- def __init__(self, config):
374
- super().__init__()
375
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
376
- self.seq_len_dim = 1
377
- self.attention = XLMRobertaXLAttention(config)
378
- self.is_decoder = config.is_decoder
379
- self.add_cross_attention = config.add_cross_attention
380
- if self.add_cross_attention:
381
- if not self.is_decoder:
382
- raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
383
- self.crossattention = XLMRobertaXLAttention(config, position_embedding_type="absolute")
384
- self.intermediate = XLMRobertaXLIntermediate(config)
385
- self.output = XLMRobertaXLOutput(config)
386
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
387
-
388
- def forward(
389
- self,
390
- hidden_states,
391
- attention_mask=None,
392
- head_mask=None,
393
- encoder_hidden_states=None,
394
- encoder_attention_mask=None,
395
- past_key_value=None,
396
- output_attentions=False,
397
- ):
398
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
399
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
400
- self_attention_outputs = self.attention(
401
- hidden_states,
402
- attention_mask,
403
- head_mask,
404
- output_attentions=output_attentions,
405
- past_key_value=self_attn_past_key_value,
406
- )
407
- attention_output = self_attention_outputs[0]
408
-
409
- # if decoder, the last output is tuple of self-attn cache
410
- if self.is_decoder:
411
- outputs = self_attention_outputs[1:-1]
412
- present_key_value = self_attention_outputs[-1]
413
- else:
414
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
415
-
416
- cross_attn_present_key_value = None
417
- if self.is_decoder and encoder_hidden_states is not None:
418
- if not hasattr(self, "crossattention"):
419
- raise ValueError(
420
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
421
- " by setting `config.add_cross_attention=True`"
422
- )
423
-
424
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
425
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
426
- cross_attention_outputs = self.crossattention(
427
- attention_output,
428
- attention_mask,
429
- head_mask,
430
- encoder_hidden_states,
431
- encoder_attention_mask,
432
- cross_attn_past_key_value,
433
- output_attentions,
434
- )
435
- attention_output = cross_attention_outputs[0]
436
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
437
-
438
- # add cross-attn cache to positions 3,4 of present_key_value tuple
439
- cross_attn_present_key_value = cross_attention_outputs[-1]
440
- present_key_value = present_key_value + cross_attn_present_key_value
441
-
442
- layer_output = apply_chunking_to_forward(
443
- self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
444
- )
445
- outputs = (layer_output,) + outputs
446
-
447
- # if decoder, return the attn key/values as the last output
448
- if self.is_decoder:
449
- outputs = outputs + (present_key_value,)
450
-
451
- return outputs
452
-
453
- def feed_forward_chunk(self, attention_output):
454
- intermediate_output = self.LayerNorm(attention_output)
455
- intermediate_output = self.intermediate(intermediate_output)
456
- layer_output = self.output(intermediate_output, attention_output)
457
- return layer_output
458
-
459
-
460
- class XLMRobertaXLEncoder(nn.Module):
461
- def __init__(self, config):
462
- super().__init__()
463
- self.config = config
464
- self.layer = nn.ModuleList([XLMRobertaXLLayer(config) for _ in range(config.num_hidden_layers)])
465
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
466
- self.gradient_checkpointing = False
467
-
468
- def forward(
469
- self,
470
- hidden_states,
471
- attention_mask=None,
472
- head_mask=None,
473
- encoder_hidden_states=None,
474
- encoder_attention_mask=None,
475
- past_key_values=None,
476
- use_cache=None,
477
- output_attentions=False,
478
- output_hidden_states=False,
479
- return_dict=True,
480
- ):
481
- if self.gradient_checkpointing and self.training:
482
- if use_cache:
483
- logger.warning_once(
484
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
485
- )
486
- use_cache = False
487
- all_hidden_states = () if output_hidden_states else None
488
- all_self_attentions = () if output_attentions else None
489
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
490
-
491
- next_decoder_cache = () if use_cache else None
492
- for i, layer_module in enumerate(self.layer):
493
- if output_hidden_states:
494
- all_hidden_states = all_hidden_states + (hidden_states,)
495
-
496
- layer_head_mask = head_mask[i] if head_mask is not None else None
497
- past_key_value = past_key_values[i] if past_key_values is not None else None
498
-
499
- if self.gradient_checkpointing and self.training:
500
- layer_outputs = self._gradient_checkpointing_func(
501
- layer_module.__call__,
502
- hidden_states,
503
- attention_mask,
504
- layer_head_mask,
505
- encoder_hidden_states,
506
- encoder_attention_mask,
507
- past_key_value,
508
- output_attentions,
509
- )
510
- else:
511
- layer_outputs = layer_module(
512
- hidden_states,
513
- attention_mask,
514
- layer_head_mask,
515
- encoder_hidden_states,
516
- encoder_attention_mask,
517
- past_key_value,
518
- output_attentions,
519
- )
520
-
521
- hidden_states = layer_outputs[0]
522
- if use_cache:
523
- next_decoder_cache += (layer_outputs[-1],)
524
- if output_attentions:
525
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
526
- if self.config.add_cross_attention:
527
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
528
-
529
- hidden_states = self.LayerNorm(hidden_states)
530
-
531
- if output_hidden_states:
532
- all_hidden_states = all_hidden_states + (hidden_states,)
533
-
534
- if not return_dict:
535
- return tuple(
536
- v
537
- for v in [
538
- hidden_states,
539
- next_decoder_cache,
540
- all_hidden_states,
541
- all_self_attentions,
542
- all_cross_attentions,
543
- ]
544
- if v is not None
545
- )
546
- return BaseModelOutputWithPastAndCrossAttentions(
547
- last_hidden_state=hidden_states,
548
- past_key_values=next_decoder_cache,
549
- hidden_states=all_hidden_states,
550
- attentions=all_self_attentions,
551
- cross_attentions=all_cross_attentions,
552
- )
553
-
554
-
555
- # Copied from transformers.models.bert.modeling_bert.BertPooler
556
- class XLMRobertaXLPooler(nn.Module):
557
- def __init__(self, config):
558
- super().__init__()
559
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
560
- self.activation = nn.Tanh()
561
-
562
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
563
- # We "pool" the model by simply taking the hidden state corresponding
564
- # to the first token.
565
- first_token_tensor = hidden_states[:, 0]
566
- pooled_output = self.dense(first_token_tensor)
567
- pooled_output = self.activation(pooled_output)
568
- return pooled_output
569
-
570
-
571
- class XLMRobertaXLPreTrainedModel(PreTrainedModel):
572
- """
573
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
574
- models.
575
- """
576
-
577
- config_class = XLMRobertaXLConfig
578
- base_model_prefix = "roberta"
579
-
580
- # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
581
- def _init_weights(self, module):
582
- """Initialize the weights"""
583
- if isinstance(module, nn.Linear):
584
- # Slightly different from the TF version which uses truncated_normal for initialization
585
- # cf https://github.com/pytorch/pytorch/pull/5617
586
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
587
- if module.bias is not None:
588
- module.bias.data.zero_()
589
- elif isinstance(module, nn.Embedding):
590
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
591
- if module.padding_idx is not None:
592
- module.weight.data[module.padding_idx].zero_()
593
- elif isinstance(module, nn.LayerNorm):
594
- module.bias.data.zero_()
595
- module.weight.data.fill_(1.0)
596
-
597
-
598
- XLM_ROBERTA_XL_START_DOCSTRING = r"""
599
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
600
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
601
- etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
602
- subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
603
- general usage and behavior.
604
-
605
- Parameters:
606
- config ([`XLMRobertaXLConfig`]): Model configuration class with all the parameters of the
607
- model. Initializing with a config file does not load the weights associated with the model, only the
608
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
609
- """
610
-
611
- XLM_ROBERTA_XL_INPUTS_DOCSTRING = r"""
612
- Args:
613
- input_ids (`torch.LongTensor` of shape `({0})`):
614
- Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
615
- [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
616
- IDs?](../glossary#input-ids)
617
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
618
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
619
-
620
- - 1 for tokens that are **not masked**,
621
- - 0 for tokens that are **masked**.
622
- [What are attention masks?](../glossary#attention-mask)
623
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
624
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
625
- 1]`:
626
-
627
- - 0 corresponds to a *sentence A* token,
628
- - 1 corresponds to a *sentence B* token.
629
- [What are token type IDs?](../glossary#token-type-ids)
630
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
631
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
632
- config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids)
633
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
634
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
635
-
636
- - 1 indicates the head is **not masked**,
637
- - 0 indicates the head is **masked**.
638
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
639
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
640
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
641
- model's internal embedding lookup matrix.
642
- output_attentions (`bool`, *optional*):
643
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
644
- tensors for more detail.
645
- output_hidden_states (`bool`, *optional*):
646
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
647
- more detail.
648
- return_dict (`bool`, *optional*):
649
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
650
- """
651
-
652
-
653
- @add_start_docstrings(
654
- "The bare XLM-RoBERTa-XL Model transformer outputting raw hidden-states without any specific head on top.",
655
- XLM_ROBERTA_XL_START_DOCSTRING,
656
- )
657
- class XLMRobertaXLModel(XLMRobertaXLPreTrainedModel):
658
- """
659
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
660
- cross-attention is added between the self-attention layers, following the architecture described in *Attention is
661
- all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
662
- Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder`
663
- argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with
664
- both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as
665
- an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
666
- """
667
-
668
- # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->XLMRobertaXL
669
- def __init__(self, config, add_pooling_layer=True):
670
- super().__init__(config)
671
- self.config = config
672
-
673
- self.embeddings = XLMRobertaXLEmbeddings(config)
674
- self.encoder = XLMRobertaXLEncoder(config)
675
-
676
- self.pooler = XLMRobertaXLPooler(config) if add_pooling_layer else None
677
-
678
- # Initialize weights and apply final processing
679
- self.post_init()
680
-
681
- def get_input_embeddings(self):
682
- return self.embeddings.word_embeddings
683
-
684
- def set_input_embeddings(self, value):
685
- self.embeddings.word_embeddings = value
686
-
687
- def _prune_heads(self, heads_to_prune):
688
- """
689
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
690
- class PreTrainedModel
691
- """
692
- for layer, heads in heads_to_prune.items():
693
- self.encoder.layer[layer].attention.prune_heads(heads)
694
-
695
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
696
- @add_code_sample_docstrings(
697
- checkpoint=_CHECKPOINT_FOR_DOC,
698
- output_type=BaseModelOutputWithPoolingAndCrossAttentions,
699
- config_class=_CONFIG_FOR_DOC,
700
- )
701
- # Copied from transformers.models.bert.modeling_bert.BertModel.forward
702
- def forward(
703
- self,
704
- input_ids: Optional[torch.Tensor] = None,
705
- attention_mask: Optional[torch.Tensor] = None,
706
- token_type_ids: Optional[torch.Tensor] = None,
707
- position_ids: Optional[torch.Tensor] = None,
708
- head_mask: Optional[torch.Tensor] = None,
709
- inputs_embeds: Optional[torch.Tensor] = None,
710
- encoder_hidden_states: Optional[torch.Tensor] = None,
711
- encoder_attention_mask: Optional[torch.Tensor] = None,
712
- past_key_values: Optional[List[torch.FloatTensor]] = None,
713
- use_cache: Optional[bool] = None,
714
- output_attentions: Optional[bool] = None,
715
- output_hidden_states: Optional[bool] = None,
716
- return_dict: Optional[bool] = None,
717
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
718
- r"""
719
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
720
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
721
- the model is configured as a decoder.
722
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
723
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
724
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
725
-
726
- - 1 for tokens that are **not masked**,
727
- - 0 for tokens that are **masked**.
728
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
729
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
730
-
731
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
732
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
733
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
734
- use_cache (`bool`, *optional*):
735
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
736
- `past_key_values`).
737
- """
738
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
739
- output_hidden_states = (
740
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
741
- )
742
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
743
-
744
- if self.config.is_decoder:
745
- use_cache = use_cache if use_cache is not None else self.config.use_cache
746
- else:
747
- use_cache = False
748
-
749
- if input_ids is not None and inputs_embeds is not None:
750
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
751
- elif input_ids is not None:
752
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
753
- input_shape = input_ids.size()
754
- elif inputs_embeds is not None:
755
- input_shape = inputs_embeds.size()[:-1]
756
- else:
757
- raise ValueError("You have to specify either input_ids or inputs_embeds")
758
-
759
- batch_size, seq_length = input_shape
760
- device = input_ids.device if input_ids is not None else inputs_embeds.device
761
-
762
- # past_key_values_length
763
- past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
764
-
765
- if attention_mask is None:
766
- attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
767
-
768
- if token_type_ids is None:
769
- if hasattr(self.embeddings, "token_type_ids"):
770
- buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
771
- buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
772
- token_type_ids = buffered_token_type_ids_expanded
773
- else:
774
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
775
-
776
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
777
- # ourselves in which case we just need to make it broadcastable to all heads.
778
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
779
-
780
- # If a 2D or 3D attention mask is provided for the cross-attention
781
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
782
- if self.config.is_decoder and encoder_hidden_states is not None:
783
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
784
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
785
- if encoder_attention_mask is None:
786
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
787
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
788
- else:
789
- encoder_extended_attention_mask = None
790
-
791
- # Prepare head mask if needed
792
- # 1.0 in head_mask indicate we keep the head
793
- # attention_probs has shape bsz x n_heads x N x N
794
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
795
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
796
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
797
-
798
- embedding_output = self.embeddings(
799
- input_ids=input_ids,
800
- position_ids=position_ids,
801
- token_type_ids=token_type_ids,
802
- inputs_embeds=inputs_embeds,
803
- past_key_values_length=past_key_values_length,
804
- )
805
- encoder_outputs = self.encoder(
806
- embedding_output,
807
- attention_mask=extended_attention_mask,
808
- head_mask=head_mask,
809
- encoder_hidden_states=encoder_hidden_states,
810
- encoder_attention_mask=encoder_extended_attention_mask,
811
- past_key_values=past_key_values,
812
- use_cache=use_cache,
813
- output_attentions=output_attentions,
814
- output_hidden_states=output_hidden_states,
815
- return_dict=return_dict,
816
- )
817
- sequence_output = encoder_outputs[0]
818
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
819
-
820
- if not return_dict:
821
- return (sequence_output, pooled_output) + encoder_outputs[1:]
822
-
823
- return BaseModelOutputWithPoolingAndCrossAttentions(
824
- last_hidden_state=sequence_output,
825
- pooler_output=pooled_output,
826
- past_key_values=encoder_outputs.past_key_values,
827
- hidden_states=encoder_outputs.hidden_states,
828
- attentions=encoder_outputs.attentions,
829
- cross_attentions=encoder_outputs.cross_attentions,
830
- )
831
-
832
-
833
- @add_start_docstrings(
834
- """XLM-RoBERTa-XL Model with a `language modeling` head on top for CLM fine-tuning.""",
835
- XLM_ROBERTA_XL_START_DOCSTRING,
836
- )
837
- class XLMRobertaXLForCausalLM(XLMRobertaXLPreTrainedModel):
838
- _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
839
-
840
- def __init__(self, config):
841
- super().__init__(config)
842
-
843
- if not config.is_decoder:
844
- logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
845
-
846
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
847
- self.lm_head = XLMRobertaXLLMHead(config)
848
-
849
- self.init_weights()
850
-
851
- def get_output_embeddings(self):
852
- return self.lm_head.decoder
853
-
854
- def set_output_embeddings(self, new_embeddings):
855
- self.lm_head.decoder = new_embeddings
856
-
857
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
858
- @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
859
- def forward(
860
- self,
861
- input_ids: Optional[torch.LongTensor] = None,
862
- attention_mask: Optional[torch.FloatTensor] = None,
863
- token_type_ids: Optional[torch.LongTensor] = None,
864
- position_ids: Optional[torch.LongTensor] = None,
865
- head_mask: Optional[torch.FloatTensor] = None,
866
- inputs_embeds: Optional[torch.FloatTensor] = None,
867
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
868
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
869
- labels: Optional[torch.LongTensor] = None,
870
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
871
- use_cache: Optional[bool] = None,
872
- output_attentions: Optional[bool] = None,
873
- output_hidden_states: Optional[bool] = None,
874
- return_dict: Optional[bool] = None,
875
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
876
- r"""
877
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
878
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
879
- the model is configured as a decoder.
880
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
881
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
882
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
883
-
884
- - 1 for tokens that are **not masked**,
885
- - 0 for tokens that are **masked**.
886
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
887
- Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
888
- `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
889
- ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
890
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
891
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
892
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
893
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
894
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
895
- use_cache (`bool`, *optional*):
896
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
897
- `past_key_values`).
898
-
899
- Returns:
900
-
901
- Example:
902
-
903
- ```python
904
- >>> from transformers import AutoTokenizer, RobertaForCausalLM, RobertaConfig
905
- >>> import torch
906
-
907
- >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
908
- >>> config = RobertaConfig.from_pretrained("FacebookAI/roberta-base")
909
- >>> config.is_decoder = True
910
- >>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
911
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
912
- >>> outputs = model(**inputs)
913
- >>> prediction_logits = outputs.logits
914
- ```
915
- """
916
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
917
- if labels is not None:
918
- use_cache = False
919
-
920
- outputs = self.roberta(
921
- input_ids,
922
- attention_mask=attention_mask,
923
- token_type_ids=token_type_ids,
924
- position_ids=position_ids,
925
- head_mask=head_mask,
926
- inputs_embeds=inputs_embeds,
927
- encoder_hidden_states=encoder_hidden_states,
928
- encoder_attention_mask=encoder_attention_mask,
929
- past_key_values=past_key_values,
930
- use_cache=use_cache,
931
- output_attentions=output_attentions,
932
- output_hidden_states=output_hidden_states,
933
- return_dict=return_dict,
934
- )
935
-
936
- sequence_output = outputs[0]
937
- prediction_scores = self.lm_head(sequence_output)
938
-
939
- lm_loss = None
940
- if labels is not None:
941
- # we are doing next-token prediction; shift prediction scores and input ids by one
942
- shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
943
- labels = labels[:, 1:].contiguous()
944
- loss_fct = CrossEntropyLoss()
945
- lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
946
-
947
- if not return_dict:
948
- output = (prediction_scores,) + outputs[2:]
949
- return ((lm_loss,) + output) if lm_loss is not None else output
950
-
951
- return CausalLMOutputWithCrossAttentions(
952
- loss=lm_loss,
953
- logits=prediction_scores,
954
- past_key_values=outputs.past_key_values,
955
- hidden_states=outputs.hidden_states,
956
- attentions=outputs.attentions,
957
- cross_attentions=outputs.cross_attentions,
958
- )
959
-
960
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
961
- input_shape = input_ids.shape
962
- # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
963
- if attention_mask is None:
964
- attention_mask = input_ids.new_ones(input_shape)
965
-
966
- # cut decoder_input_ids if past_key_values is used
967
- if past_key_values is not None:
968
- past_length = past_key_values[0][0].shape[2]
969
-
970
- # Some generation methods already pass only the last input ID
971
- if input_ids.shape[1] > past_length:
972
- remove_prefix_length = past_length
973
- else:
974
- # Default to old behavior: keep only final ID
975
- remove_prefix_length = input_ids.shape[1] - 1
976
-
977
- input_ids = input_ids[:, remove_prefix_length:]
978
-
979
- return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
980
-
981
- def _reorder_cache(self, past_key_values, beam_idx):
982
- reordered_past = ()
983
- for layer_past in past_key_values:
984
- reordered_past += (
985
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
986
- )
987
- return reordered_past
988
-
989
-
990
- @add_start_docstrings(
991
- """XLM-RoBERTa-XL Model with a `language modeling` head on top.""", XLM_ROBERTA_XL_START_DOCSTRING
992
- )
993
- class XLMRobertaXLForMaskedLM(XLMRobertaXLPreTrainedModel):
994
- _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
995
-
996
- def __init__(self, config):
997
- super().__init__(config)
998
-
999
- if config.is_decoder:
1000
- logger.warning(
1001
- "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
1002
- "bi-directional self-attention."
1003
- )
1004
-
1005
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
1006
- self.lm_head = XLMRobertaXLLMHead(config)
1007
-
1008
- self.init_weights()
1009
-
1010
- def get_output_embeddings(self):
1011
- return self.lm_head.decoder
1012
-
1013
- def set_output_embeddings(self, new_embeddings):
1014
- self.lm_head.decoder = new_embeddings
1015
-
1016
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1017
- @add_code_sample_docstrings(
1018
- checkpoint=_CHECKPOINT_FOR_DOC,
1019
- output_type=MaskedLMOutput,
1020
- config_class=_CONFIG_FOR_DOC,
1021
- mask="<mask>",
1022
- )
1023
- def forward(
1024
- self,
1025
- input_ids: Optional[torch.LongTensor] = None,
1026
- attention_mask: Optional[torch.FloatTensor] = None,
1027
- token_type_ids: Optional[torch.LongTensor] = None,
1028
- position_ids: Optional[torch.LongTensor] = None,
1029
- head_mask: Optional[torch.FloatTensor] = None,
1030
- inputs_embeds: Optional[torch.FloatTensor] = None,
1031
- encoder_hidden_states: Optional[torch.Tensor] = None,
1032
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
1033
- labels: Optional[torch.LongTensor] = None,
1034
- output_attentions: Optional[bool] = None,
1035
- output_hidden_states: Optional[bool] = None,
1036
- return_dict: Optional[bool] = None,
1037
- ) -> Union[Tuple, MaskedLMOutput]:
1038
- r"""
1039
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1040
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1041
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1042
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1043
- kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1044
- Used to hide legacy arguments that have been deprecated.
1045
- """
1046
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1047
-
1048
- outputs = self.roberta(
1049
- input_ids,
1050
- attention_mask=attention_mask,
1051
- token_type_ids=token_type_ids,
1052
- position_ids=position_ids,
1053
- head_mask=head_mask,
1054
- inputs_embeds=inputs_embeds,
1055
- encoder_hidden_states=encoder_hidden_states,
1056
- encoder_attention_mask=encoder_attention_mask,
1057
- output_attentions=output_attentions,
1058
- output_hidden_states=output_hidden_states,
1059
- return_dict=return_dict,
1060
- )
1061
- sequence_output = outputs[0]
1062
- prediction_scores = self.lm_head(sequence_output)
1063
-
1064
- masked_lm_loss = None
1065
- if labels is not None:
1066
- loss_fct = CrossEntropyLoss()
1067
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1068
-
1069
- if not return_dict:
1070
- output = (prediction_scores,) + outputs[2:]
1071
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1072
-
1073
- return MaskedLMOutput(
1074
- loss=masked_lm_loss,
1075
- logits=prediction_scores,
1076
- hidden_states=outputs.hidden_states,
1077
- attentions=outputs.attentions,
1078
- )
1079
-
1080
-
1081
- class XLMRobertaXLLMHead(nn.Module):
1082
- """XLM-RoBERTa-XL Head for masked language modeling."""
1083
-
1084
- def __init__(self, config):
1085
- super().__init__()
1086
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1087
- self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1088
-
1089
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
1090
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1091
- self.decoder.bias = self.bias
1092
-
1093
- def forward(self, features, **kwargs):
1094
- x = self.dense(features)
1095
- x = gelu(x)
1096
- x = self.layer_norm(x)
1097
-
1098
- # project back to size of vocabulary with bias
1099
- x = self.decoder(x)
1100
-
1101
- return x
1102
-
1103
- def _tie_weights(self):
1104
- # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
1105
- self.bias = self.decoder.bias
1106
-
1107
-
1108
- @add_start_docstrings(
1109
- """
1110
- XLM-RoBERTa-XL Model transformer with a sequence classification/regression head on top (a linear layer on top
1111
- of the pooled output) e.g. for GLUE tasks.
1112
- """,
1113
- XLM_ROBERTA_XL_START_DOCSTRING,
1114
- )
1115
- class XLMRobertaXLForSequenceClassification(XLMRobertaXLPreTrainedModel):
1116
- def __init__(self, config):
1117
- super().__init__(config)
1118
- self.num_labels = config.num_labels
1119
- self.config = config
1120
-
1121
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
1122
- self.classifier = XLMRobertaXLClassificationHead(config)
1123
-
1124
- self.init_weights()
1125
-
1126
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1127
- @add_code_sample_docstrings(
1128
- checkpoint=_CHECKPOINT_FOR_DOC,
1129
- output_type=SequenceClassifierOutput,
1130
- config_class=_CONFIG_FOR_DOC,
1131
- )
1132
- def forward(
1133
- self,
1134
- input_ids: Optional[torch.LongTensor] = None,
1135
- attention_mask: Optional[torch.FloatTensor] = None,
1136
- token_type_ids: Optional[torch.LongTensor] = None,
1137
- position_ids: Optional[torch.LongTensor] = None,
1138
- head_mask: Optional[torch.FloatTensor] = None,
1139
- inputs_embeds: Optional[torch.FloatTensor] = None,
1140
- labels: Optional[torch.LongTensor] = None,
1141
- output_attentions: Optional[bool] = None,
1142
- output_hidden_states: Optional[bool] = None,
1143
- return_dict: Optional[bool] = None,
1144
- ) -> Union[Tuple, SequenceClassifierOutput]:
1145
- r"""
1146
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1147
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1148
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1149
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1150
- """
1151
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1152
-
1153
- outputs = self.roberta(
1154
- input_ids,
1155
- attention_mask=attention_mask,
1156
- token_type_ids=token_type_ids,
1157
- position_ids=position_ids,
1158
- head_mask=head_mask,
1159
- inputs_embeds=inputs_embeds,
1160
- output_attentions=output_attentions,
1161
- output_hidden_states=output_hidden_states,
1162
- return_dict=return_dict,
1163
- )
1164
- sequence_output = outputs[0]
1165
- logits = self.classifier(sequence_output)
1166
-
1167
- loss = None
1168
- if labels is not None:
1169
- if self.config.problem_type is None:
1170
- if self.num_labels == 1:
1171
- self.config.problem_type = "regression"
1172
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1173
- self.config.problem_type = "single_label_classification"
1174
- else:
1175
- self.config.problem_type = "multi_label_classification"
1176
-
1177
- if self.config.problem_type == "regression":
1178
- loss_fct = MSELoss()
1179
- if self.num_labels == 1:
1180
- loss = loss_fct(logits.squeeze(), labels.squeeze())
1181
- else:
1182
- loss = loss_fct(logits, labels)
1183
- elif self.config.problem_type == "single_label_classification":
1184
- loss_fct = CrossEntropyLoss()
1185
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1186
- elif self.config.problem_type == "multi_label_classification":
1187
- loss_fct = BCEWithLogitsLoss()
1188
- loss = loss_fct(logits, labels)
1189
-
1190
- if not return_dict:
1191
- output = (logits,) + outputs[2:]
1192
- return ((loss,) + output) if loss is not None else output
1193
-
1194
- return SequenceClassifierOutput(
1195
- loss=loss,
1196
- logits=logits,
1197
- hidden_states=outputs.hidden_states,
1198
- attentions=outputs.attentions,
1199
- )
1200
-
1201
-
1202
- @add_start_docstrings(
1203
- """
1204
- XLM-RoBERTa-XL Model with a multiple choice classification head on top (a linear layer on top of the pooled
1205
- output and a softmax) e.g. for RocStories/SWAG tasks.
1206
- """,
1207
- XLM_ROBERTA_XL_START_DOCSTRING,
1208
- )
1209
- class XLMRobertaXLForMultipleChoice(XLMRobertaXLPreTrainedModel):
1210
- def __init__(self, config):
1211
- super().__init__(config)
1212
-
1213
- self.roberta = XLMRobertaXLModel(config)
1214
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
1215
- self.classifier = nn.Linear(config.hidden_size, 1)
1216
-
1217
- self.init_weights()
1218
-
1219
- @add_start_docstrings_to_model_forward(
1220
- XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
1221
- )
1222
- @add_code_sample_docstrings(
1223
- checkpoint=_CHECKPOINT_FOR_DOC,
1224
- output_type=MultipleChoiceModelOutput,
1225
- config_class=_CONFIG_FOR_DOC,
1226
- )
1227
- def forward(
1228
- self,
1229
- input_ids: Optional[torch.LongTensor] = None,
1230
- token_type_ids: Optional[torch.LongTensor] = None,
1231
- attention_mask: Optional[torch.FloatTensor] = None,
1232
- labels: Optional[torch.LongTensor] = None,
1233
- position_ids: Optional[torch.LongTensor] = None,
1234
- head_mask: Optional[torch.FloatTensor] = None,
1235
- inputs_embeds: Optional[torch.FloatTensor] = None,
1236
- output_attentions: Optional[bool] = None,
1237
- output_hidden_states: Optional[bool] = None,
1238
- return_dict: Optional[bool] = None,
1239
- ) -> Union[Tuple, MultipleChoiceModelOutput]:
1240
- r"""
1241
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1242
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1243
- num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1244
- `input_ids` above)
1245
- """
1246
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1247
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1248
-
1249
- flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1250
- flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1251
- flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1252
- flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1253
- flat_inputs_embeds = (
1254
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1255
- if inputs_embeds is not None
1256
- else None
1257
- )
1258
-
1259
- outputs = self.roberta(
1260
- flat_input_ids,
1261
- position_ids=flat_position_ids,
1262
- token_type_ids=flat_token_type_ids,
1263
- attention_mask=flat_attention_mask,
1264
- head_mask=head_mask,
1265
- inputs_embeds=flat_inputs_embeds,
1266
- output_attentions=output_attentions,
1267
- output_hidden_states=output_hidden_states,
1268
- return_dict=return_dict,
1269
- )
1270
- pooled_output = outputs[1]
1271
-
1272
- pooled_output = self.dropout(pooled_output)
1273
- logits = self.classifier(pooled_output)
1274
- reshaped_logits = logits.view(-1, num_choices)
1275
-
1276
- loss = None
1277
- if labels is not None:
1278
- loss_fct = CrossEntropyLoss()
1279
- loss = loss_fct(reshaped_logits, labels)
1280
-
1281
- if not return_dict:
1282
- output = (reshaped_logits,) + outputs[2:]
1283
- return ((loss,) + output) if loss is not None else output
1284
-
1285
- return MultipleChoiceModelOutput(
1286
- loss=loss,
1287
- logits=reshaped_logits,
1288
- hidden_states=outputs.hidden_states,
1289
- attentions=outputs.attentions,
1290
- )
1291
-
1292
-
1293
- class LayerwiseAttention(torch.nn.Module):
1294
- def __init__(
1295
- self,
1296
- num_hidden_layers: int,
1297
- layer_norm: bool = False,
1298
- layer_weights: Optional[List[int]] = None,
1299
- dropout: float = None,
1300
- layer_transformation: str = "softmax",
1301
- ) -> None:
1302
- super(LayerwiseAttention, self).__init__()
1303
- self.num_layers = num_hidden_layers + 1
1304
- self.layer_norm = layer_norm
1305
- self.dropout = dropout
1306
-
1307
- self.transform_fn = torch.softmax
1308
- if layer_transformation == "sparsemax":
1309
- from entmax import sparsemax
1310
-
1311
- self.transform_fn = sparsemax
1312
-
1313
- if layer_weights is None:
1314
- layer_weights = [0.0] * self.num_layers
1315
- elif len(layer_weights) != self.num_layers:
1316
- raise Exception(
1317
- "Length of layer_weights {} differs \
1318
- from num_layers {}".format(
1319
- layer_weights, self.num_layers
1320
- )
1321
- )
1322
- self.gam = Parameter(torch.FloatTensor([1.0]), requires_grad=True)
1323
- self.scalar_parameters = ParameterList(
1324
- [
1325
- Parameter(
1326
- torch.FloatTensor([layer_weights[i]]),
1327
- requires_grad=True,
1328
- )
1329
- for i in range(self.num_layers)
1330
- ]
1331
- )
1332
-
1333
-
1334
-
1335
- if self.dropout:
1336
- dropout_mask = torch.zeros(len(self.scalar_parameters))
1337
- dropout_fill = torch.empty(len(self.scalar_parameters)).fill_(-1e20)
1338
- self.register_buffer("dropout_mask", dropout_mask)
1339
- self.register_buffer("dropout_fill", dropout_fill)
1340
-
1341
- def forward(
1342
- self,
1343
- tensors: List[torch.Tensor], # pylint: disable=arguments-differ
1344
- mask: torch.Tensor = None,
1345
- ) -> torch.Tensor:
1346
- if len(tensors) != self.num_layers:
1347
- raise Exception(
1348
- "{} tensors were passed, but the module was initialized to \
1349
- mix {} tensors.".format(
1350
- len(tensors), self.num_layers
1351
- )
1352
- )
1353
-
1354
- def _layer_norm(tensor, broadcast_mask, mask):
1355
- tensor_masked = tensor * broadcast_mask
1356
- batch_size, _, input_dim = tensors[0].size()
1357
-
1358
- # mean for each sentence
1359
- num_elements_not_masked = mask.sum(1) * input_dim
1360
- mean = tensor_masked.view(batch_size, -1).sum(1)
1361
- mean = (mean / num_elements_not_masked).view(batch_size, 1, 1)
1362
-
1363
- variance = (((tensor_masked - mean) * broadcast_mask) ** 2).view(
1364
- batch_size, -1
1365
- ).sum(1) / num_elements_not_masked
1366
- normalized_tensor = (tensor - mean) / torch.sqrt(variance + 1e-12).view(
1367
- batch_size, 1, 1
1368
- )
1369
- return normalized_tensor
1370
-
1371
- # BUG: Pytorch bug fix when Parameters are not well copied across GPUs
1372
- # https://github.com/pytorch/pytorch/issues/36035
1373
- if len([parameter for parameter in self.scalar_parameters]) != self.num_layers:
1374
- weights = torch.tensor(self.weights, device=tensors[0].device)
1375
- gamma = torch.tensor(self.gam, device=tensors[0].device)
1376
- else:
1377
- weights = torch.cat([parameter for parameter in self.scalar_parameters])
1378
- gamma = self.gam
1379
-
1380
- if self.training and self.dropout:
1381
- weights = torch.where(
1382
- self.dropout_mask.uniform_() > self.dropout, weights, self.dropout_fill
1383
- )
1384
-
1385
- normed_weights = self.transform_fn(weights, dim=0)
1386
- normed_weights = torch.split(normed_weights, split_size_or_sections=1)
1387
-
1388
- if not self.layer_norm:
1389
- pieces = []
1390
- for weight, tensor in zip(normed_weights, tensors):
1391
- pieces.append(weight * tensor)
1392
- return gamma * sum(pieces)
1393
-
1394
- else:
1395
- mask_float = mask.float()
1396
- broadcast_mask = mask_float.unsqueeze(-1)
1397
-
1398
- pieces = []
1399
- for weight, tensor in zip(normed_weights, tensors):
1400
- pieces.append(weight * _layer_norm(tensor, broadcast_mask, mask_float))
1401
- return gamma * sum(pieces)
1402
-
1403
-
1404
- class FeedForward(nn.Module):
1405
- """Feed Forward Neural Network.
1406
-
1407
- Args:
1408
- in_dim (int): Number input features.
1409
- out_dim (int): Number of output features. Default is just a score.
1410
- hidden_sizes (List[int]): List with hidden layer sizes. Defaults to [3072,1024]
1411
- activations (str): Name of the activation function to be used in the hidden
1412
- layers. Defaults to 'Tanh'.
1413
- final_activation (Optional[str]): Final activation if any.
1414
- dropout (float): dropout to be used in the hidden layers.
1415
- """
1416
-
1417
- def __init__(
1418
- self,
1419
- in_dim: int = 1024,
1420
- out_dim: int = 1,
1421
- hidden_sizes: List[int] = [3072, 1024],
1422
- activations: str = "Tanh",
1423
- final_activation: Optional[str] = None,
1424
- dropout: float = 0.0,
1425
- ) -> None:
1426
- super().__init__()
1427
- modules = []
1428
- modules.append(nn.Linear(in_dim, hidden_sizes[0]))
1429
- modules.append(self.build_activation(activations))
1430
- modules.append(nn.Dropout(dropout))
1431
-
1432
- for i in range(1, len(hidden_sizes)):
1433
- modules.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
1434
- modules.append(self.build_activation(activations))
1435
- modules.append(nn.Dropout(dropout))
1436
-
1437
- modules.append(nn.Linear(hidden_sizes[-1], int(out_dim)))
1438
- if final_activation is not None:
1439
- modules.append(self.build_activation(final_activation))
1440
-
1441
- self.ff = nn.Sequential(*modules)
1442
-
1443
- def build_activation(self, activation: str) -> nn.Module:
1444
- if hasattr(nn, activation.title()):
1445
- return getattr(nn, activation.title())()
1446
- else:
1447
- raise Exception(f"{activation} is not a valid activation function!")
1448
-
1449
- def forward(self, in_features: torch.Tensor) -> torch.Tensor:
1450
- return self.ff(in_features)
1451
-
1452
-
1453
- @add_start_docstrings(
1454
- """
1455
- XLM-RoBERTa-XL Model with a multiple choice classification head on top (a linear layer on top of the pooled
1456
- output and a softmax) e.g. for RocStories/SWAG tasks.
1457
- """,
1458
- XLM_ROBERTA_XL_START_DOCSTRING,
1459
- )
1460
- class XLMRobertaXLForEstimation(XLMRobertaXLPreTrainedModel):
1461
- def __init__(self, config):
1462
- super().__init__(config)
1463
- print("Estimation")
1464
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
1465
- self.layerwise_attention = LayerwiseAttention(
1466
- layer_transformation=config.layer_transformation,
1467
- num_hidden_layers=config.num_hidden_layers,
1468
- dropout=config.dropout,
1469
- layer_norm=config.layer_norm
1470
- )
1471
-
1472
- self.estimator = FeedForward(
1473
- in_dim=config.hidden_size,
1474
- hidden_sizes=config.estimator_sizes,
1475
- )
1476
-
1477
- self.init_weights()
1478
-
1479
- def forward(
1480
- self,
1481
- input_ids: Optional[torch.LongTensor] = None,
1482
- token_type_ids: Optional[torch.LongTensor] = None,
1483
- attention_mask: Optional[torch.FloatTensor] = None,
1484
- labels: Optional[torch.LongTensor] = None,
1485
- position_ids: Optional[torch.LongTensor] = None,
1486
- head_mask: Optional[torch.FloatTensor] = None,
1487
- inputs_embeds: Optional[torch.FloatTensor] = None,
1488
- output_attentions: Optional[bool] = None,
1489
- output_hidden_states: Optional[bool] = None,
1490
- return_dict: Optional[bool] = None,
1491
- ) -> Union[Tuple, MultipleChoiceModelOutput]:
1492
- r"""
1493
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1494
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1495
- num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1496
- `input_ids` above)
1497
- """
1498
- return_dict = False
1499
- output_hidden_states = True
1500
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1501
-
1502
- flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1503
- flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1504
- flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1505
- flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1506
- flat_inputs_embeds = (
1507
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1508
- if inputs_embeds is not None
1509
- else None
1510
- )
1511
-
1512
- outputs = self.roberta(
1513
- flat_input_ids,
1514
- position_ids=flat_position_ids,
1515
- token_type_ids=flat_token_type_ids,
1516
- attention_mask=flat_attention_mask,
1517
- head_mask=head_mask,
1518
- inputs_embeds=flat_inputs_embeds,
1519
- output_attentions=output_attentions,
1520
- output_hidden_states=output_hidden_states,
1521
- return_dict=return_dict,
1522
- )
1523
-
1524
- if self.layerwise_attention:
1525
- embeddings = self.layerwise_attention(
1526
- outputs[2], attention_mask
1527
- )
1528
- else:
1529
- embeddings = outputs[0]
1530
-
1531
- CLS_tok = embeddings[:, 0, :] # for some reason at sentence level we take the first token score cf Comet
1532
-
1533
- logits = self.estimator(CLS_tok)
1534
- reshaped_logits = logits #.view(-1, num_choices)
1535
-
1536
- loss = None
1537
- if labels is not None:
1538
- loss_fct = CrossEntropyLoss()
1539
- loss = loss_fct(reshaped_logits, labels)
1540
-
1541
- if not return_dict:
1542
- output = (reshaped_logits,) + outputs[2:]
1543
- return ((loss,) + output) if loss is not None else output
1544
-
1545
- return MultipleChoiceModelOutput(
1546
- loss=loss,
1547
- logits=reshaped_logits,
1548
- hidden_states=outputs.hidden_states,
1549
- attentions=outputs.attentions,
1550
- )
1551
-
1552
-
1553
- @add_start_docstrings(
1554
- """
1555
- XLM-RoBERTa-XL Model with a token classification head on top (a linear layer on top of the hidden-states
1556
- output) e.g. for Named-Entity-Recognition (NER) tasks.
1557
- """,
1558
- XLM_ROBERTA_XL_START_DOCSTRING,
1559
- )
1560
- class XLMRobertaXLForTokenClassification(XLMRobertaXLPreTrainedModel):
1561
- def __init__(self, config):
1562
- super().__init__(config)
1563
- self.num_labels = config.num_labels
1564
-
1565
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
1566
- classifier_dropout = (
1567
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1568
- )
1569
- self.dropout = nn.Dropout(classifier_dropout)
1570
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1571
-
1572
- self.init_weights()
1573
-
1574
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1575
- @add_code_sample_docstrings(
1576
- checkpoint=_CHECKPOINT_FOR_DOC,
1577
- output_type=TokenClassifierOutput,
1578
- config_class=_CONFIG_FOR_DOC,
1579
- )
1580
- def forward(
1581
- self,
1582
- input_ids: Optional[torch.LongTensor] = None,
1583
- attention_mask: Optional[torch.FloatTensor] = None,
1584
- token_type_ids: Optional[torch.LongTensor] = None,
1585
- position_ids: Optional[torch.LongTensor] = None,
1586
- head_mask: Optional[torch.FloatTensor] = None,
1587
- inputs_embeds: Optional[torch.FloatTensor] = None,
1588
- labels: Optional[torch.LongTensor] = None,
1589
- output_attentions: Optional[bool] = None,
1590
- output_hidden_states: Optional[bool] = None,
1591
- return_dict: Optional[bool] = None,
1592
- ) -> Union[Tuple, TokenClassifierOutput]:
1593
- r"""
1594
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1595
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1596
- """
1597
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1598
-
1599
- outputs = self.roberta(
1600
- input_ids,
1601
- attention_mask=attention_mask,
1602
- token_type_ids=token_type_ids,
1603
- position_ids=position_ids,
1604
- head_mask=head_mask,
1605
- inputs_embeds=inputs_embeds,
1606
- output_attentions=output_attentions,
1607
- output_hidden_states=output_hidden_states,
1608
- return_dict=return_dict,
1609
- )
1610
-
1611
- sequence_output = outputs[0]
1612
-
1613
- sequence_output = self.dropout(sequence_output)
1614
- logits = self.classifier(sequence_output)
1615
-
1616
- loss = None
1617
- if labels is not None:
1618
- loss_fct = CrossEntropyLoss()
1619
- # Only keep active parts of the loss
1620
- if attention_mask is not None:
1621
- active_loss = attention_mask.view(-1) == 1
1622
- active_logits = logits.view(-1, self.num_labels)
1623
- active_labels = torch.where(
1624
- active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
1625
- )
1626
- loss = loss_fct(active_logits, active_labels)
1627
- else:
1628
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1629
-
1630
- if not return_dict:
1631
- output = (logits,) + outputs[2:]
1632
- return ((loss,) + output) if loss is not None else output
1633
-
1634
- return TokenClassifierOutput(
1635
- loss=loss,
1636
- logits=logits,
1637
- hidden_states=outputs.hidden_states,
1638
- attentions=outputs.attentions,
1639
- )
1640
-
1641
-
1642
- class XLMRobertaXLClassificationHead(nn.Module):
1643
- """Head for sentence-level classification tasks."""
1644
-
1645
- def __init__(self, config):
1646
- super().__init__()
1647
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1648
- classifier_dropout = (
1649
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1650
- )
1651
- self.dropout = nn.Dropout(classifier_dropout)
1652
- self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
1653
-
1654
- def forward(self, features, **kwargs):
1655
- x = features[:, 0, :] # take <s> token (equiv. to [CLS])
1656
- x = self.dropout(x)
1657
- x = self.dense(x)
1658
- x = torch.tanh(x)
1659
- x = self.dropout(x)
1660
- x = self.out_proj(x)
1661
- return x
1662
-
1663
-
1664
- @add_start_docstrings(
1665
- """
1666
- XLM-RoBERTa-XL Model with a span classification head on top for extractive question-answering tasks like SQuAD
1667
- (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
1668
- """,
1669
- XLM_ROBERTA_XL_START_DOCSTRING,
1670
- )
1671
- class XLMRobertaXLForQuestionAnswering(XLMRobertaXLPreTrainedModel):
1672
- def __init__(self, config):
1673
- super().__init__(config)
1674
- self.num_labels = config.num_labels
1675
-
1676
- self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False)
1677
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1678
-
1679
- self.init_weights()
1680
-
1681
- @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1682
- @add_code_sample_docstrings(
1683
- checkpoint=_CHECKPOINT_FOR_DOC,
1684
- output_type=QuestionAnsweringModelOutput,
1685
- config_class=_CONFIG_FOR_DOC,
1686
- )
1687
- def forward(
1688
- self,
1689
- input_ids: Optional[torch.LongTensor] = None,
1690
- attention_mask: Optional[torch.FloatTensor] = None,
1691
- token_type_ids: Optional[torch.LongTensor] = None,
1692
- position_ids: Optional[torch.LongTensor] = None,
1693
- head_mask: Optional[torch.FloatTensor] = None,
1694
- inputs_embeds: Optional[torch.FloatTensor] = None,
1695
- start_positions: Optional[torch.LongTensor] = None,
1696
- end_positions: Optional[torch.LongTensor] = None,
1697
- output_attentions: Optional[bool] = None,
1698
- output_hidden_states: Optional[bool] = None,
1699
- return_dict: Optional[bool] = None,
1700
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1701
- r"""
1702
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1703
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
1704
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1705
- are not taken into account for computing the loss.
1706
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1707
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
1708
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1709
- are not taken into account for computing the loss.
1710
- """
1711
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1712
-
1713
- outputs = self.roberta(
1714
- input_ids,
1715
- attention_mask=attention_mask,
1716
- token_type_ids=token_type_ids,
1717
- position_ids=position_ids,
1718
- head_mask=head_mask,
1719
- inputs_embeds=inputs_embeds,
1720
- output_attentions=output_attentions,
1721
- output_hidden_states=output_hidden_states,
1722
- return_dict=return_dict,
1723
- )
1724
-
1725
- sequence_output = outputs[0]
1726
-
1727
- logits = self.qa_outputs(sequence_output)
1728
- start_logits, end_logits = logits.split(1, dim=-1)
1729
- start_logits = start_logits.squeeze(-1).contiguous()
1730
- end_logits = end_logits.squeeze(-1).contiguous()
1731
-
1732
- total_loss = None
1733
- if start_positions is not None and end_positions is not None:
1734
- # If we are on multi-GPU, split add a dimension
1735
- if len(start_positions.size()) > 1:
1736
- start_positions = start_positions.squeeze(-1)
1737
- if len(end_positions.size()) > 1:
1738
- end_positions = end_positions.squeeze(-1)
1739
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
1740
- ignored_index = start_logits.size(1)
1741
- start_positions = start_positions.clamp(0, ignored_index)
1742
- end_positions = end_positions.clamp(0, ignored_index)
1743
-
1744
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1745
- start_loss = loss_fct(start_logits, start_positions)
1746
- end_loss = loss_fct(end_logits, end_positions)
1747
- total_loss = (start_loss + end_loss) / 2
1748
-
1749
- if not return_dict:
1750
- output = (start_logits, end_logits) + outputs[2:]
1751
- return ((total_loss,) + output) if total_loss is not None else output
1752
-
1753
- return QuestionAnsweringModelOutput(
1754
- loss=total_loss,
1755
- start_logits=start_logits,
1756
- end_logits=end_logits,
1757
- hidden_states=outputs.hidden_states,
1758
- attentions=outputs.attentions,
1759
- )
1760
-
1761
-
1762
- # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
1763
- def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
1764
- """
1765
- Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1766
- are ignored. This is modified from fairseq's `utils.make_positions`.
1767
-
1768
- Args:
1769
- x: torch.Tensor x:
1770
-
1771
- Returns: torch.Tensor
1772
- """
1773
- # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1774
- mask = input_ids.ne(padding_idx).int()
1775
- incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
1776
- return incremental_indices.long() + padding_idx
1777
-