--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer - trl metrics: - accuracy model-index: - name: llama-2-7b-reward-oasst1 results: [] datasets: - tasksource/oasst1_pairwise_rlhf_reward library_name: peft --- # llama-2-7b-reward-oasst1 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the first 10000 rows of the [tasksource/oasst1_pairwise_rlhf_reward](https://huggingface.co/datasets/tasksource/oasst1_pairwise_rlhf_reward) dataset. It achieves the following results on the evaluation set: - Loss: 0.5713 - Accuracy: 0.7435 See also [vincentmin/llama-2-13b-reward-oasst1](https://huggingface.co/vincentmin/llama-2-13b-reward-oasst1) for a 13b version of this model. ## Model description This is a reward model trained with QLoRA in 4bit precision. The base model is [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) for which you need to have accepted the license in order to be able use it. Once you've been given permission, you can load the reward model as follows: ``` import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSequenceClassification, AutoTokenizer peft_model_id = "vincentmin/llama-2-7b-reward-oasst1" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSequenceClassification.from_pretrained( config.base_model_name_or_path, num_labels=1, load_in_4bit=True, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, use_auth_token=True) model.eval() with torch.no_grad(): reward = model(**tokenizer("prompter: hello world. assistant: foo bar", return_tensors='pt')).logits reward ``` For best results, one should use the prompt format used during training: ``` prompt = "prompter: assistant: prompter: ..." ``` Please use a version of peft where [#755](https://github.com/huggingface/peft/pull/755) has been merged to make sure the model is loaded correctly. You can install `peft` with `pip install git+https://github.com/huggingface/peft.git` to make sure this is the case. ## Intended uses & limitations Since the model was trained on oasst1 data, the reward will reflect any biases present in the oasst1 data. ## Training and evaluation data The model was trained using QLoRA and the `trl` library's `RewardTrainer` on the [tasksource/oasst1_pairwise_rlhf_reward](https://huggingface.co/datasets/tasksource/oasst1_pairwise_rlhf_reward) dataset. Examples with more than 1024 tokens were filtered out and the training data was restricted to the first 10000 rows of the filtered dataset. ### Training hyperparameters The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - max_seq_length: 1024 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8409 | 0.1 | 250 | 0.8243 | 0.6220 | | 0.6288 | 0.2 | 500 | 0.7539 | 0.6715 | | 0.5882 | 0.3 | 750 | 0.6792 | 0.7075 | | 0.7671 | 0.4 | 1000 | 0.6130 | 0.7334 | | 0.5782 | 0.5 | 1250 | 0.6115 | 0.7255 | | 0.5691 | 0.6 | 1500 | 0.5795 | 0.7413 | | 0.6579 | 0.7 | 1750 | 0.5774 | 0.7469 | | 0.6107 | 0.8 | 2000 | 0.5691 | 0.7402 | | 0.6255 | 0.9 | 2250 | 0.5710 | 0.7435 | | 0.7034 | 1.0 | 2500 | 0.5713 | 0.7435 | ### Framework versions - PEFT 0.5.0.dev0 (with https://github.com/huggingface/peft/pull/755) - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3