Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.29 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:084f4645e14adeb8dac4692c1477741bebbdd53d110000dd578f1c1a1a4fc5f3
|
3 |
+
size 108078
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a57209c60>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9a57214bc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 283520,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1685446736094500455,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn9iDv7GnWL+KYLS/H0z8vZUHrz8pLsa/nsNGP0rBgj8Jlu0+4PF5P95Vrb4KbtC+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyeCLvxCxeb+ZkLG/XEYSvg65wj/tcdC/6D9pP26kkD+Iedg+iayLP2gWsb5AmQO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACf2IO/sadYv4pgtL+3xy29/M2NvDwkNr0fTPy9lQevPykuxr9C4x+9JaaTvQaNZr2ew0Y/SsGCPwmW7T55m7a9E+r5vEQO5D3g8Xk/3lWtvgpu0L40rBc9RBOLPEDGmT6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[-1.0300483 -0.84630877 -1.4091961 ]\n [-0.12319206 1.3674189 -1.5482837 ]\n [ 0.7764224 1.0215237 0.4640353 ]\n [ 0.97634697 -0.33854574 -0.40708953]]",
|
38 |
+
"desired_goal": "[[-1.0927974 -0.975358 -1.3872253 ]\n [-0.14284652 1.5212724 -1.6284767 ]\n [ 0.9111314 1.130018 0.4228022 ]\n [ 1.0912029 -0.34587407 -0.51405716]]",
|
39 |
+
"observation": "[[-1.0300483 -0.84630877 -1.4091961 -0.04242679 -0.01731014 -0.04446815]\n [-0.12319206 1.3674189 -1.5482837 -0.03903509 -0.07209424 -0.05628683]\n [ 0.7764224 1.0215237 0.4640353 -0.08916373 -0.03050712 0.11135533]\n [ 0.97634697 -0.33854574 -0.40708953 0.03702946 0.01697696 0.30034065]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXrkGvgrUDb7B04o+y4wHvvOM8b1YFa89GYjbPWKwQL0irY8+w8wbup35lLyhiI0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.1315665 -0.13850418 0.2711468 ]\n [-0.13237302 -0.11794462 0.08548993]\n [ 0.10719318 -0.04704321 0.28061777]\n [-0.00059433 -0.01818543 0.27643302]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.71648,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc0hqoWRy4L+UhpRSlIwBbJRLMowBdJRHQIgaUDr7fpF1fZQoaAZoCWgPQwh6jV2iemvov5SGlFKUaBVLMmgWR0CIGPKaoddWdX2UKGgGaAloD0MIu9QI/Uy94r+UhpRSlGgVSzJoFkdAiBex6F/QSnV9lChoBmgJaA9DCLpm8s02N+m/lIaUUpRoFUsyaBZHQIgWah11W811fZQoaAZoCWgPQwj6t8t+3Wnov5SGlFKUaBVLMmgWR0CIHueqaPS2dX2UKGgGaAloD0MIpMLYQpAD47+UhpRSlGgVSzJoFkdAiB2KPwNLDnV9lChoBmgJaA9DCKm/XmHBfeO/lIaUUpRoFUsyaBZHQIgcSWkadc11fZQoaAZoCWgPQwhI+Um1T8fXv5SGlFKUaBVLMmgWR0CIGwE8JUo8dX2UKGgGaAloD0MIOUIG8uzy1L+UhpRSlGgVSzJoFkdAiCNQHqu8snV9lChoBmgJaA9DCOC+Dpwzoti/lIaUUpRoFUsyaBZHQIgh8afjCHh1fZQoaAZoCWgPQwiMgXUcP1Tfv5SGlFKUaBVLMmgWR0CIILGFzuF6dX2UKGgGaAloD0MIns+AejNq5r+UhpRSlGgVSzJoFkdAiB9pul41P3V9lChoBmgJaA9DCFORCmMLwee/lIaUUpRoFUsyaBZHQIgnmiSJTER1fZQoaAZoCWgPQwjDmzV4X5Xhv5SGlFKUaBVLMmgWR0CIJjwazeGgdX2UKGgGaAloD0MI1EZ1OpB14r+UhpRSlGgVSzJoFkdAiCT7EpAlfXV9lChoBmgJaA9DCCZWRiOfV9q/lIaUUpRoFUsyaBZHQIgjsqaw2VF1fZQoaAZoCWgPQwioHf6arFHqv5SGlFKUaBVLMmgWR0CILBC66J66dX2UKGgGaAloD0MI2xmmttRB3L+UhpRSlGgVSzJoFkdAiCqyW7e2u3V9lChoBmgJaA9DCJj8T/7uHeW/lIaUUpRoFUsyaBZHQIgpcVHnU2F1fZQoaAZoCWgPQwgaNV8lH7vpv5SGlFKUaBVLMmgWR0CIKCkoF3Y+dX2UKGgGaAloD0MI4dHGEWvx3b+UhpRSlGgVSzJoFkdAiDGZzHS4OXV9lChoBmgJaA9DCBXFq6xtiuG/lIaUUpRoFUsyaBZHQIgwPhhpg1F1fZQoaAZoCWgPQwhwW1t4Xircv5SGlFKUaBVLMmgWR0CILwDNhVlxdX2UKGgGaAloD0MI4gM7/gsE5b+UhpRSlGgVSzJoFkdAiC28ABDG+HV9lChoBmgJaA9DCJBLHHkgMuO/lIaUUpRoFUsyaBZHQIg4w4yXUpd1fZQoaAZoCWgPQwjheanYmFflv5SGlFKUaBVLMmgWR0CIN2iSq2jPdX2UKGgGaAloD0MIY9S19j5V5b+UhpRSlGgVSzJoFkdAiDYtrbg0j3V9lChoBmgJaA9DCAbWcfxQ6eS/lIaUUpRoFUsyaBZHQIg06OPvKEF1fZQoaAZoCWgPQwhHy4Eeatvhv5SGlFKUaBVLMmgWR0CIQDsYVIqcdX2UKGgGaAloD0MIDHOCNjl83b+UhpRSlGgVSzJoFkdAiD7fffoA4nV9lChoBmgJaA9DCNXMWgpI++u/lIaUUpRoFUsyaBZHQIg9oV9F4LV1fZQoaAZoCWgPQwgR/7ClR1Pnv5SGlFKUaBVLMmgWR0CIPFzo2XLNdX2UKGgGaAloD0MIGxNiLqla5L+UhpRSlGgVSzJoFkdAiEfBSk0rLHV9lChoBmgJaA9DCKlKW1zjM9y/lIaUUpRoFUsyaBZHQIhGZigCfYl1fZQoaAZoCWgPQwicb0T3rGviv5SGlFKUaBVLMmgWR0CIRSjEehf0dX2UKGgGaAloD0MIv0NRoE9k5r+UhpRSlGgVSzJoFkdAiEPkEs8PnXV9lChoBmgJaA9DCCI0go3rX+q/lIaUUpRoFUsyaBZHQIhPaUHIIWx1fZQoaAZoCWgPQwiK5gEs8uvhv5SGlFKUaBVLMmgWR0CITg4cWCVbdX2UKGgGaAloD0MIO/2gLlKo5r+UhpRSlGgVSzJoFkdAiEzRIatLc3V9lChoBmgJaA9DCKG5TiMtldu/lIaUUpRoFUsyaBZHQIhLjNbC79R1fZQoaAZoCWgPQwhPPdLgtrbev5SGlFKUaBVLMmgWR0CIVzRqGlANdX2UKGgGaAloD0MIYmngRzVs4b+UhpRSlGgVSzJoFkdAiFXZvDP4VXV9lChoBmgJaA9DCMOC+wEPDOK/lIaUUpRoFUsyaBZHQIhUnK4hEBt1fZQoaAZoCWgPQwj44/bLJyvjv5SGlFKUaBVLMmgWR0CIU1dCVryldX2UKGgGaAloD0MIa2YtBaT91L+UhpRSlGgVSzJoFkdAiF08sMAmzHV9lChoBmgJaA9DCC/9S1KZYtO/lIaUUpRoFUsyaBZHQIhb3tlZowp1fZQoaAZoCWgPQwg3b5wU5j3gv5SGlFKUaBVLMmgWR0CIWp4A0bcXdX2UKGgGaAloD0MIYkm5+xwf27+UhpRSlGgVSzJoFkdAiFlWN3np0XV9lChoBmgJaA9DCMO68e7IWN2/lIaUUpRoFUsyaBZHQIhhjUgB91F1fZQoaAZoCWgPQwi2ZFWEmwzpv5SGlFKUaBVLMmgWR0CIYC7yQPqcdX2UKGgGaAloD0MIn47HDFTG4r+UhpRSlGgVSzJoFkdAiF7t4iX6ZnV9lChoBmgJaA9DCOXS+IVXktW/lIaUUpRoFUsyaBZHQIhdpbwBo251fZQoaAZoCWgPQwjpYP2fw3zrv5SGlFKUaBVLMmgWR0CIZePYFqzrdX2UKGgGaAloD0MItCJqos9H47+UhpRSlGgVSzJoFkdAiGSFjVhCt3V9lChoBmgJaA9DCBdGelG7X92/lIaUUpRoFUsyaBZHQIhjRHAh0Qt1fZQoaAZoCWgPQwi8PQgB+ZLjv5SGlFKUaBVLMmgWR0CIYfwrlNlAdX2UKGgGaAloD0MI/+cwX14A4L+UhpRSlGgVSzJoFkdAiGonyEtdzHV9lChoBmgJaA9DCPaYSGk2j+a/lIaUUpRoFUsyaBZHQIhoyguh9LJ1fZQoaAZoCWgPQwiW620zFeLnv5SGlFKUaBVLMmgWR0CIZ4luWKMvdX2UKGgGaAloD0MIutdJfVna3L+UhpRSlGgVSzJoFkdAiGZBa9sabXV9lChoBmgJaA9DCCgMyjSaXOe/lIaUUpRoFUsyaBZHQIhuh8pkPMB1fZQoaAZoCWgPQwjUD+oihTLlv5SGlFKUaBVLMmgWR0CIbSkrwvxpdX2UKGgGaAloD0MIEi7kEdzI6L+UhpRSlGgVSzJoFkdAiGvoV/MGHHV9lChoBmgJaA9DCMy4qYHm8+S/lIaUUpRoFUsyaBZHQIhqoFvAGjd1fZQoaAZoCWgPQwgEHEKVmj3kv5SGlFKUaBVLMmgWR0CIcsHs1KoRdX2UKGgGaAloD0MIQIf58gJs4r+UhpRSlGgVSzJoFkdAiHFjin5zo3V9lChoBmgJaA9DCJPjTulg/d6/lIaUUpRoFUsyaBZHQIhwIjfNzKd1fZQoaAZoCWgPQwjEP2zp0VTlv5SGlFKUaBVLMmgWR0CIbtnX/YJ3dX2UKGgGaAloD0MI71aW6Cyz5b+UhpRSlGgVSzJoFkdAiHck8ifQKXV9lChoBmgJaA9DCBxg5jv4iee/lIaUUpRoFUsyaBZHQIh1xzmwJPZ1fZQoaAZoCWgPQwgpe0s5X+zcv5SGlFKUaBVLMmgWR0CIdIb2Dg62dX2UKGgGaAloD0MITOKsiJro3r+UhpRSlGgVSzJoFkdAiHM++ueSS3V9lChoBmgJaA9DCJ5+UBcplOS/lIaUUpRoFUsyaBZHQIh7mO801qF1fZQoaAZoCWgPQwgSEmkbf6Ljv5SGlFKUaBVLMmgWR0CIejreIl+mdX2UKGgGaAloD0MIM6mhDcAG37+UhpRSlGgVSzJoFkdAiHj57ojfN3V9lChoBmgJaA9DCJVh3A2itdG/lIaUUpRoFUsyaBZHQIh3shRqGlB1fZQoaAZoCWgPQwh7oYDtYMTdv5SGlFKUaBVLMmgWR0CIf/02cawVdX2UKGgGaAloD0MIgxPRr62f1r+UhpRSlGgVSzJoFkdAiH6e7Dl5nnV9lChoBmgJaA9DCGNH41C/C+O/lIaUUpRoFUsyaBZHQIh9XbsWweN1fZQoaAZoCWgPQwjIQQkzbX/iv5SGlFKUaBVLMmgWR0CIfBXCj1wpdX2UKGgGaAloD0MI3EYDeAsk5L+UhpRSlGgVSzJoFkdAiISyZBsyi3V9lChoBmgJaA9DCD6WPnRBfeG/lIaUUpRoFUsyaBZHQIiDVtVJcxF1fZQoaAZoCWgPQwjMRXwnZr3Wv5SGlFKUaBVLMmgWR0CIghokAxSHdX2UKGgGaAloD0MIqcDJNnAH6r+UhpRSlGgVSzJoFkdAiIDb655JLHV9lChoBmgJaA9DCC2xMhr5vNm/lIaUUpRoFUsyaBZHQIiJGkcjqwB1fZQoaAZoCWgPQwgt6L0xBIDnv5SGlFKUaBVLMmgWR0CIh7xHXmNjdX2UKGgGaAloD0MIQ1iNJayN07+UhpRSlGgVSzJoFkdAiIZ7nPmganV9lChoBmgJaA9DCGKfAIqRJd6/lIaUUpRoFUsyaBZHQIiFM32mHgx1fZQoaAZoCWgPQwiTpkHRPIDXv5SGlFKUaBVLMmgWR0CIjV69CeEqdX2UKGgGaAloD0MIbJVgcTjz2b+UhpRSlGgVSzJoFkdAiIwAZjx0+3V9lChoBmgJaA9DCAWk/Q+wVtW/lIaUUpRoFUsyaBZHQIiKv0h/y5J1fZQoaAZoCWgPQwg8hVypZ8Hhv5SGlFKUaBVLMmgWR0CIiXbuc+aCdX2UKGgGaAloD0MIb9i2KLPB5r+UhpRSlGgVSzJoFkdAiJF9onKGL3V9lChoBmgJaA9DCEWDFDyFXNS/lIaUUpRoFUsyaBZHQIiQH446wMZ1fZQoaAZoCWgPQwhOJm4VxMDhv5SGlFKUaBVLMmgWR0CIjt47A+INdX2UKGgGaAloD0MI6s4Tz9mC5b+UhpRSlGgVSzJoFkdAiI2WOyVv/HV9lChoBmgJaA9DCOi8xi5RvdO/lIaUUpRoFUsyaBZHQIiV2tQsPJ91fZQoaAZoCWgPQwjVBFH3AUjbv5SGlFKUaBVLMmgWR0CIlHyIYWLxdX2UKGgGaAloD0MICoMyjSYX5r+UhpRSlGgVSzJoFkdAiJM7tzCDVnV9lChoBmgJaA9DCPWB5J1DmeC/lIaUUpRoFUsyaBZHQIiR9AzHjp91ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 14176,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a05535cb7f9c07f6a80d883719b68d98b12a410d0861e6d1c3cd66122789faab
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4dc0975155c83c7537ca1896b9e6535bfebb8476f2ce8c064ae8d6c7b294662
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a57209c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9a57214bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 283520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685446736094500455, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAn9iDv7GnWL+KYLS/H0z8vZUHrz8pLsa/nsNGP0rBgj8Jlu0+4PF5P95Vrb4KbtC+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyeCLvxCxeb+ZkLG/XEYSvg65wj/tcdC/6D9pP26kkD+Iedg+iayLP2gWsb5AmQO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACf2IO/sadYv4pgtL+3xy29/M2NvDwkNr0fTPy9lQevPykuxr9C4x+9JaaTvQaNZr2ew0Y/SsGCPwmW7T55m7a9E+r5vEQO5D3g8Xk/3lWtvgpu0L40rBc9RBOLPEDGmT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.0300483 -0.84630877 -1.4091961 ]\n [-0.12319206 1.3674189 -1.5482837 ]\n [ 0.7764224 1.0215237 0.4640353 ]\n [ 0.97634697 -0.33854574 -0.40708953]]", "desired_goal": "[[-1.0927974 -0.975358 -1.3872253 ]\n [-0.14284652 1.5212724 -1.6284767 ]\n [ 0.9111314 1.130018 0.4228022 ]\n [ 1.0912029 -0.34587407 -0.51405716]]", "observation": "[[-1.0300483 -0.84630877 -1.4091961 -0.04242679 -0.01731014 -0.04446815]\n [-0.12319206 1.3674189 -1.5482837 -0.03903509 -0.07209424 -0.05628683]\n [ 0.7764224 1.0215237 0.4640353 -0.08916373 -0.03050712 0.11135533]\n [ 0.97634697 -0.33854574 -0.40708953 0.03702946 0.01697696 0.30034065]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXrkGvgrUDb7B04o+y4wHvvOM8b1YFa89GYjbPWKwQL0irY8+w8wbup35lLyhiI0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1315665 -0.13850418 0.2711468 ]\n [-0.13237302 -0.11794462 0.08548993]\n [ 0.10719318 -0.04704321 0.28061777]\n [-0.00059433 -0.01818543 0.27643302]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.71648, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc0hqoWRy4L+UhpRSlIwBbJRLMowBdJRHQIgaUDr7fpF1fZQoaAZoCWgPQwh6jV2iemvov5SGlFKUaBVLMmgWR0CIGPKaoddWdX2UKGgGaAloD0MIu9QI/Uy94r+UhpRSlGgVSzJoFkdAiBex6F/QSnV9lChoBmgJaA9DCLpm8s02N+m/lIaUUpRoFUsyaBZHQIgWah11W811fZQoaAZoCWgPQwj6t8t+3Wnov5SGlFKUaBVLMmgWR0CIHueqaPS2dX2UKGgGaAloD0MIpMLYQpAD47+UhpRSlGgVSzJoFkdAiB2KPwNLDnV9lChoBmgJaA9DCKm/XmHBfeO/lIaUUpRoFUsyaBZHQIgcSWkadc11fZQoaAZoCWgPQwhI+Um1T8fXv5SGlFKUaBVLMmgWR0CIGwE8JUo8dX2UKGgGaAloD0MIOUIG8uzy1L+UhpRSlGgVSzJoFkdAiCNQHqu8snV9lChoBmgJaA9DCOC+Dpwzoti/lIaUUpRoFUsyaBZHQIgh8afjCHh1fZQoaAZoCWgPQwiMgXUcP1Tfv5SGlFKUaBVLMmgWR0CIILGFzuF6dX2UKGgGaAloD0MIns+AejNq5r+UhpRSlGgVSzJoFkdAiB9pul41P3V9lChoBmgJaA9DCFORCmMLwee/lIaUUpRoFUsyaBZHQIgnmiSJTER1fZQoaAZoCWgPQwjDmzV4X5Xhv5SGlFKUaBVLMmgWR0CIJjwazeGgdX2UKGgGaAloD0MI1EZ1OpB14r+UhpRSlGgVSzJoFkdAiCT7EpAlfXV9lChoBmgJaA9DCCZWRiOfV9q/lIaUUpRoFUsyaBZHQIgjsqaw2VF1fZQoaAZoCWgPQwioHf6arFHqv5SGlFKUaBVLMmgWR0CILBC66J66dX2UKGgGaAloD0MI2xmmttRB3L+UhpRSlGgVSzJoFkdAiCqyW7e2u3V9lChoBmgJaA9DCJj8T/7uHeW/lIaUUpRoFUsyaBZHQIgpcVHnU2F1fZQoaAZoCWgPQwgaNV8lH7vpv5SGlFKUaBVLMmgWR0CIKCkoF3Y+dX2UKGgGaAloD0MI4dHGEWvx3b+UhpRSlGgVSzJoFkdAiDGZzHS4OXV9lChoBmgJaA9DCBXFq6xtiuG/lIaUUpRoFUsyaBZHQIgwPhhpg1F1fZQoaAZoCWgPQwhwW1t4Xircv5SGlFKUaBVLMmgWR0CILwDNhVlxdX2UKGgGaAloD0MI4gM7/gsE5b+UhpRSlGgVSzJoFkdAiC28ABDG+HV9lChoBmgJaA9DCJBLHHkgMuO/lIaUUpRoFUsyaBZHQIg4w4yXUpd1fZQoaAZoCWgPQwjheanYmFflv5SGlFKUaBVLMmgWR0CIN2iSq2jPdX2UKGgGaAloD0MIY9S19j5V5b+UhpRSlGgVSzJoFkdAiDYtrbg0j3V9lChoBmgJaA9DCAbWcfxQ6eS/lIaUUpRoFUsyaBZHQIg06OPvKEF1fZQoaAZoCWgPQwhHy4Eeatvhv5SGlFKUaBVLMmgWR0CIQDsYVIqcdX2UKGgGaAloD0MIDHOCNjl83b+UhpRSlGgVSzJoFkdAiD7fffoA4nV9lChoBmgJaA9DCNXMWgpI++u/lIaUUpRoFUsyaBZHQIg9oV9F4LV1fZQoaAZoCWgPQwgR/7ClR1Pnv5SGlFKUaBVLMmgWR0CIPFzo2XLNdX2UKGgGaAloD0MIGxNiLqla5L+UhpRSlGgVSzJoFkdAiEfBSk0rLHV9lChoBmgJaA9DCKlKW1zjM9y/lIaUUpRoFUsyaBZHQIhGZigCfYl1fZQoaAZoCWgPQwicb0T3rGviv5SGlFKUaBVLMmgWR0CIRSjEehf0dX2UKGgGaAloD0MIv0NRoE9k5r+UhpRSlGgVSzJoFkdAiEPkEs8PnXV9lChoBmgJaA9DCCI0go3rX+q/lIaUUpRoFUsyaBZHQIhPaUHIIWx1fZQoaAZoCWgPQwiK5gEs8uvhv5SGlFKUaBVLMmgWR0CITg4cWCVbdX2UKGgGaAloD0MIO/2gLlKo5r+UhpRSlGgVSzJoFkdAiEzRIatLc3V9lChoBmgJaA9DCKG5TiMtldu/lIaUUpRoFUsyaBZHQIhLjNbC79R1fZQoaAZoCWgPQwhPPdLgtrbev5SGlFKUaBVLMmgWR0CIVzRqGlANdX2UKGgGaAloD0MIYmngRzVs4b+UhpRSlGgVSzJoFkdAiFXZvDP4VXV9lChoBmgJaA9DCMOC+wEPDOK/lIaUUpRoFUsyaBZHQIhUnK4hEBt1fZQoaAZoCWgPQwj44/bLJyvjv5SGlFKUaBVLMmgWR0CIU1dCVryldX2UKGgGaAloD0MIa2YtBaT91L+UhpRSlGgVSzJoFkdAiF08sMAmzHV9lChoBmgJaA9DCC/9S1KZYtO/lIaUUpRoFUsyaBZHQIhb3tlZowp1fZQoaAZoCWgPQwg3b5wU5j3gv5SGlFKUaBVLMmgWR0CIWp4A0bcXdX2UKGgGaAloD0MIYkm5+xwf27+UhpRSlGgVSzJoFkdAiFlWN3np0XV9lChoBmgJaA9DCMO68e7IWN2/lIaUUpRoFUsyaBZHQIhhjUgB91F1fZQoaAZoCWgPQwi2ZFWEmwzpv5SGlFKUaBVLMmgWR0CIYC7yQPqcdX2UKGgGaAloD0MIn47HDFTG4r+UhpRSlGgVSzJoFkdAiF7t4iX6ZnV9lChoBmgJaA9DCOXS+IVXktW/lIaUUpRoFUsyaBZHQIhdpbwBo251fZQoaAZoCWgPQwjpYP2fw3zrv5SGlFKUaBVLMmgWR0CIZePYFqzrdX2UKGgGaAloD0MItCJqos9H47+UhpRSlGgVSzJoFkdAiGSFjVhCt3V9lChoBmgJaA9DCBdGelG7X92/lIaUUpRoFUsyaBZHQIhjRHAh0Qt1fZQoaAZoCWgPQwi8PQgB+ZLjv5SGlFKUaBVLMmgWR0CIYfwrlNlAdX2UKGgGaAloD0MI/+cwX14A4L+UhpRSlGgVSzJoFkdAiGonyEtdzHV9lChoBmgJaA9DCPaYSGk2j+a/lIaUUpRoFUsyaBZHQIhoyguh9LJ1fZQoaAZoCWgPQwiW620zFeLnv5SGlFKUaBVLMmgWR0CIZ4luWKMvdX2UKGgGaAloD0MIutdJfVna3L+UhpRSlGgVSzJoFkdAiGZBa9sabXV9lChoBmgJaA9DCCgMyjSaXOe/lIaUUpRoFUsyaBZHQIhuh8pkPMB1fZQoaAZoCWgPQwjUD+oihTLlv5SGlFKUaBVLMmgWR0CIbSkrwvxpdX2UKGgGaAloD0MIEi7kEdzI6L+UhpRSlGgVSzJoFkdAiGvoV/MGHHV9lChoBmgJaA9DCMy4qYHm8+S/lIaUUpRoFUsyaBZHQIhqoFvAGjd1fZQoaAZoCWgPQwgEHEKVmj3kv5SGlFKUaBVLMmgWR0CIcsHs1KoRdX2UKGgGaAloD0MIQIf58gJs4r+UhpRSlGgVSzJoFkdAiHFjin5zo3V9lChoBmgJaA9DCJPjTulg/d6/lIaUUpRoFUsyaBZHQIhwIjfNzKd1fZQoaAZoCWgPQwjEP2zp0VTlv5SGlFKUaBVLMmgWR0CIbtnX/YJ3dX2UKGgGaAloD0MI71aW6Cyz5b+UhpRSlGgVSzJoFkdAiHck8ifQKXV9lChoBmgJaA9DCBxg5jv4iee/lIaUUpRoFUsyaBZHQIh1xzmwJPZ1fZQoaAZoCWgPQwgpe0s5X+zcv5SGlFKUaBVLMmgWR0CIdIb2Dg62dX2UKGgGaAloD0MITOKsiJro3r+UhpRSlGgVSzJoFkdAiHM++ueSS3V9lChoBmgJaA9DCJ5+UBcplOS/lIaUUpRoFUsyaBZHQIh7mO801qF1fZQoaAZoCWgPQwgSEmkbf6Ljv5SGlFKUaBVLMmgWR0CIejreIl+mdX2UKGgGaAloD0MIM6mhDcAG37+UhpRSlGgVSzJoFkdAiHj57ojfN3V9lChoBmgJaA9DCJVh3A2itdG/lIaUUpRoFUsyaBZHQIh3shRqGlB1fZQoaAZoCWgPQwh7oYDtYMTdv5SGlFKUaBVLMmgWR0CIf/02cawVdX2UKGgGaAloD0MIgxPRr62f1r+UhpRSlGgVSzJoFkdAiH6e7Dl5nnV9lChoBmgJaA9DCGNH41C/C+O/lIaUUpRoFUsyaBZHQIh9XbsWweN1fZQoaAZoCWgPQwjIQQkzbX/iv5SGlFKUaBVLMmgWR0CIfBXCj1wpdX2UKGgGaAloD0MI3EYDeAsk5L+UhpRSlGgVSzJoFkdAiISyZBsyi3V9lChoBmgJaA9DCD6WPnRBfeG/lIaUUpRoFUsyaBZHQIiDVtVJcxF1fZQoaAZoCWgPQwjMRXwnZr3Wv5SGlFKUaBVLMmgWR0CIghokAxSHdX2UKGgGaAloD0MIqcDJNnAH6r+UhpRSlGgVSzJoFkdAiIDb655JLHV9lChoBmgJaA9DCC2xMhr5vNm/lIaUUpRoFUsyaBZHQIiJGkcjqwB1fZQoaAZoCWgPQwgt6L0xBIDnv5SGlFKUaBVLMmgWR0CIh7xHXmNjdX2UKGgGaAloD0MIQ1iNJayN07+UhpRSlGgVSzJoFkdAiIZ7nPmganV9lChoBmgJaA9DCGKfAIqRJd6/lIaUUpRoFUsyaBZHQIiFM32mHgx1fZQoaAZoCWgPQwiTpkHRPIDXv5SGlFKUaBVLMmgWR0CIjV69CeEqdX2UKGgGaAloD0MIbJVgcTjz2b+UhpRSlGgVSzJoFkdAiIwAZjx0+3V9lChoBmgJaA9DCAWk/Q+wVtW/lIaUUpRoFUsyaBZHQIiKv0h/y5J1fZQoaAZoCWgPQwg8hVypZ8Hhv5SGlFKUaBVLMmgWR0CIiXbuc+aCdX2UKGgGaAloD0MIb9i2KLPB5r+UhpRSlGgVSzJoFkdAiJF9onKGL3V9lChoBmgJaA9DCEWDFDyFXNS/lIaUUpRoFUsyaBZHQIiQH446wMZ1fZQoaAZoCWgPQwhOJm4VxMDhv5SGlFKUaBVLMmgWR0CIjt47A+INdX2UKGgGaAloD0MI6s4Tz9mC5b+UhpRSlGgVSzJoFkdAiI2WOyVv/HV9lChoBmgJaA9DCOi8xi5RvdO/lIaUUpRoFUsyaBZHQIiV2tQsPJ91fZQoaAZoCWgPQwjVBFH3AUjbv5SGlFKUaBVLMmgWR0CIlHyIYWLxdX2UKGgGaAloD0MICoMyjSYX5r+UhpRSlGgVSzJoFkdAiJM7tzCDVnV9lChoBmgJaA9DCPWB5J1DmeC/lIaUUpRoFUsyaBZHQIiR9AzHjp91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14176, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (259 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2946773239469621, "std_reward": 0.09567508761836686, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T11:52:14.809296"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2238b2c4bb4be5422f036dc9a7fe79ef3a5e3d7e651d3b3f31e251122565f5e9
|
3 |
+
size 2387
|