{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1d128cab00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690014525815658081, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZwXgPgWz7rtv6Qk/ZwXgPgWz7rtv6Qk/ZwXgPgWz7rtv6Qk/ZwXgPgWz7rtv6Qk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVkB9v+vpVz9yztg/LKOKP7Q20z+l5iO+RGoOPfaB0T+GPbk/Ky+uPv/Nx78cbh2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABnBeA+BbPuu2/pCT9Gwh481ti3uug8/jtnBeA+BbPuu2/pCT9Gwh481ti3uug8/jtnBeA+BbPuu2/pCT9Gwh481ti3uug8/jtnBeA+BbPuu2/pCT9Gwh481ti3uug8/juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43754122 -0.00728452 0.53871816]\n [ 0.43754122 -0.00728452 0.53871816]\n [ 0.43754122 -0.00728452 0.53871816]\n [ 0.43754122 -0.00728452 0.53871816]]", "desired_goal": "[[-0.98926294 0.84341305 1.6938002 ]\n [ 1.0831046 1.6501069 -0.16005953]\n [ 0.03476931 1.6367786 1.44719 ]\n [ 0.3402036 -1.560974 -0.6149614 ]]", "observation": "[[ 0.43754122 -0.00728452 0.53871816 0.00968987 -0.00140264 0.00775873]\n [ 0.43754122 -0.00728452 0.53871816 0.00968987 -0.00140264 0.00775873]\n [ 0.43754122 -0.00728452 0.53871816 0.00968987 -0.00140264 0.00775873]\n [ 0.43754122 -0.00728452 0.53871816 0.00968987 -0.00140264 0.00775873]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0chEPVtk8LyzwBg+xaBrver8lL27Q1g9MfpnvdSLxD0RMzE+GdcAviUHKb0vmZk7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04804308 -0.02934473 0.14917259]\n [-0.05752637 -0.07274802 0.05279897]\n [-0.05663509 0.09596983 0.17304637]\n [-0.12582053 -0.04126658 0.00468745]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBr03hgCg97+UhpRSlIwBbJRLMowBdJRHQKhrIy2QXAN1fZQoaAZoCWgPQwhAogkUsQj8v5SGlFKUaBVLMmgWR0CoawCKBNEgdX2UKGgGaAloD0MI/RadLLVe8r+UhpRSlGgVSzJoFkdAqGreA7Ppp3V9lChoBmgJaA9DCLcm3ZbIJQPAlIaUUpRoFUsyaBZHQKhqu3Sa3JB1fZQoaAZoCWgPQwhBt5c0RosEwJSGlFKUaBVLMmgWR0Coa8KneiztdX2UKGgGaAloD0MIwi/186bi+L+UhpRSlGgVSzJoFkdAqGugDxLCenV9lChoBmgJaA9DCMg/M4gP7PS/lIaUUpRoFUsyaBZHQKhrfYFJQLx1fZQoaAZoCWgPQwju6eqOxfb0v5SGlFKUaBVLMmgWR0Coa1rylN1ydX2UKGgGaAloD0MIAKyOHOksAcCUhpRSlGgVSzJoFkdAqGxtKEnLJXV9lChoBmgJaA9DCKAaL90khva/lIaUUpRoFUsyaBZHQKhsSp3os7N1fZQoaAZoCWgPQwhvnX+77Bf7v5SGlFKUaBVLMmgWR0CobCgeii7DdX2UKGgGaAloD0MI14S0xqBTBMCUhpRSlGgVSzJoFkdAqGwFpj+aSnV9lChoBmgJaA9DCERssHCShgTAlIaUUpRoFUsyaBZHQKhtKSX+l0p1fZQoaAZoCWgPQwgGhNbDl8kCwJSGlFKUaBVLMmgWR0CobQaNuLrHdX2UKGgGaAloD0MI5PbLJyvG+b+UhpRSlGgVSzJoFkdAqGzkCmuTzXV9lChoBmgJaA9DCNo391ePO/6/lIaUUpRoFUsyaBZHQKhswYVqN6x1fZQoaAZoCWgPQwi1UgjkEkf4v5SGlFKUaBVLMmgWR0CobdaCUX54dX2UKGgGaAloD0MI0xdCzvu/97+UhpRSlGgVSzJoFkdAqG2z5Kvmo3V9lChoBmgJaA9DCJombD8ZI/6/lIaUUpRoFUsyaBZHQKhtkWbgCOp1fZQoaAZoCWgPQwgxzXSvk/rwv5SGlFKUaBVLMmgWR0CobW7e/Ho6dX2UKGgGaAloD0MIzGH3HcOj9b+UhpRSlGgVSzJoFkdAqG6EHlfZ3HV9lChoBmgJaA9DCFpo5zQLtAvAlIaUUpRoFUsyaBZHQKhuYXQ+lj51fZQoaAZoCWgPQwhZGCKnr6f3v5SGlFKUaBVLMmgWR0Cobj71qWTpdX2UKGgGaAloD0MIFvvL7smD9r+UhpRSlGgVSzJoFkdAqG4ccyWRinV9lChoBmgJaA9DCFiNJayNsfq/lIaUUpRoFUsyaBZHQKhvLhGYrrh1fZQoaAZoCWgPQwhJopdRLLf8v5SGlFKUaBVLMmgWR0Cobwt8eCCjdX2UKGgGaAloD0MIGjT0T3ChEMCUhpRSlGgVSzJoFkdAqG7o/X5FgHV9lChoBmgJaA9DCLlwICQL2Pm/lIaUUpRoFUsyaBZHQKhuxnX/YJ51fZQoaAZoCWgPQwh1AwXeyWf7v5SGlFKUaBVLMmgWR0Cob9rzoUzsdX2UKGgGaAloD0MIlSnmIOgoCsCUhpRSlGgVSzJoFkdAqG+4WpIcznV9lChoBmgJaA9DCNeFH5xP/QzAlIaUUpRoFUsyaBZHQKhvleTmnwZ1fZQoaAZoCWgPQwjys5HrphT9v5SGlFKUaBVLMmgWR0Cob3NhmXgMdX2UKGgGaAloD0MI2evdH++V/7+UhpRSlGgVSzJoFkdAqHCGEh7mdXV9lChoBmgJaA9DCNwNorWinRLAlIaUUpRoFUsyaBZHQKhwY4LkS291fZQoaAZoCWgPQwhUbw1slfASwJSGlFKUaBVLMmgWR0CocED7Q9iddX2UKGgGaAloD0MIti41Qj9TFMCUhpRSlGgVSzJoFkdAqHAecSXdCXV9lChoBmgJaA9DCMFu2LYoEwbAlIaUUpRoFUsyaBZHQKhxRSBK+SN1fZQoaAZoCWgPQwi+2ebG9LQRwJSGlFKUaBVLMmgWR0CocSKRU3n7dX2UKGgGaAloD0MIkE/Izts4EMCUhpRSlGgVSzJoFkdAqHEAFA3T/nV9lChoBmgJaA9DCL9DUaBP5A3AlIaUUpRoFUsyaBZHQKhw3Zdv8651fZQoaAZoCWgPQwiqtwa2SjAMwJSGlFKUaBVLMmgWR0CocfJzLfUGdX2UKGgGaAloD0MIchWL3xT2AMCUhpRSlGgVSzJoFkdAqHHP16E8JXV9lChoBmgJaA9DCPdZZaa0zhHAlIaUUpRoFUsyaBZHQKhxrV09yLh1fZQoaAZoCWgPQwjTMHxETOkAwJSGlFKUaBVLMmgWR0CocYrM9r44dX2UKGgGaAloD0MInzws1JqGC8CUhpRSlGgVSzJoFkdAqHKdzIV/MHV9lChoBmgJaA9DCFqeB3dnTQrAlIaUUpRoFUsyaBZHQKhyezzmOlx1fZQoaAZoCWgPQwiy2vy/6ngcwJSGlFKUaBVLMmgWR0Cocli6xxDLdX2UKGgGaAloD0MIV3iXi/juAsCUhpRSlGgVSzJoFkdAqHI2KwY+CHV9lChoBmgJaA9DCAk1Q6oovgvAlIaUUpRoFUsyaBZHQKhzRNHpbEB1fZQoaAZoCWgPQwhJL2r3q0ADwJSGlFKUaBVLMmgWR0CocyIyTINmdX2UKGgGaAloD0MI10y+2eZGCsCUhpRSlGgVSzJoFkdAqHL/t6X0G3V9lChoBmgJaA9DCPePhegQeAfAlIaUUpRoFUsyaBZHQKhy3TAFgUl1fZQoaAZoCWgPQwicielCrH7wv5SGlFKUaBVLMmgWR0Coc/ISlFc6dX2UKGgGaAloD0MIWFaalIKuEMCUhpRSlGgVSzJoFkdAqHPPf2saKnV9lChoBmgJaA9DCIRkARO49QDAlIaUUpRoFUsyaBZHQKhzrPyCnP51fZQoaAZoCWgPQwhgrdo1Ie33v5SGlFKUaBVLMmgWR0Coc4p66asqdX2UKGgGaAloD0MI3Zp0WyIX+L+UhpRSlGgVSzJoFkdAqHSa9bor4HV9lChoBmgJaA9DCAjKbfseNfe/lIaUUpRoFUsyaBZHQKh0eGKQ7tB1fZQoaAZoCWgPQwgoK4arA4AEwJSGlFKUaBVLMmgWR0CodFXmFJxvdX2UKGgGaAloD0MIiSmRRC/jBMCUhpRSlGgVSzJoFkdAqHQzPSlWO3V9lChoBmgJaA9DCFEv+DQnLwjAlIaUUpRoFUsyaBZHQKh1PW07bL51fZQoaAZoCWgPQwiA7zZvnNQIwJSGlFKUaBVLMmgWR0CodRqyGBWgdX2UKGgGaAloD0MIF/GdmPXi9L+UhpRSlGgVSzJoFkdAqHT4IBzV+nV9lChoBmgJaA9DCLHAV3TrNf+/lIaUUpRoFUsyaBZHQKh01ZezD4x1fZQoaAZoCWgPQwj0Fg/vOTD5v5SGlFKUaBVLMmgWR0CodeL5AQg+dX2UKGgGaAloD0MIgh/VsN+TAMCUhpRSlGgVSzJoFkdAqHXAZ88cMnV9lChoBmgJaA9DCL99HThnJATAlIaUUpRoFUsyaBZHQKh1nefI0ZZ1fZQoaAZoCWgPQwhA+iZNg2ILwJSGlFKUaBVLMmgWR0CodXtmL9/CdX2UKGgGaAloD0MIiLt6FRld/L+UhpRSlGgVSzJoFkdAqHaI6GQCCHV9lChoBmgJaA9DCNEgBU8h1/e/lIaUUpRoFUsyaBZHQKh2Zlum78N1fZQoaAZoCWgPQwiTp6ym6ykKwJSGlFKUaBVLMmgWR0CodkPc8DB/dX2UKGgGaAloD0MIj3Ba8KIPCMCUhpRSlGgVSzJoFkdAqHYhVU+9rXV9lChoBmgJaA9DCOf+6nHfigHAlIaUUpRoFUsyaBZHQKh3K1aW5Yp1fZQoaAZoCWgPQwii0R3EzrQBwJSGlFKUaBVLMmgWR0CodwjH4oJBdX2UKGgGaAloD0MI4C2QoPgxC8CUhpRSlGgVSzJoFkdAqHbmRT0g83V9lChoBmgJaA9DCDeKrDWU2v2/lIaUUpRoFUsyaBZHQKh2w8jiXIF1fZQoaAZoCWgPQwjK/Q5Fgf4CwJSGlFKUaBVLMmgWR0Cod831BdD6dX2UKGgGaAloD0MIiuYBLPJrBcCUhpRSlGgVSzJoFkdAqHerZg5R0nV9lChoBmgJaA9DCLABEeLKuQHAlIaUUpRoFUsyaBZHQKh3iN5MURF1fZQoaAZoCWgPQwhQOSaL+88FwJSGlFKUaBVLMmgWR0Cod2ZW7voedX2UKGgGaAloD0MIamyvBb23DMCUhpRSlGgVSzJoFkdAqHh6d1+y7nV9lChoBmgJaA9DCNLkYgysAwTAlIaUUpRoFUsyaBZHQKh4V/GVAzJ1fZQoaAZoCWgPQwiHGRpPBPH7v5SGlFKUaBVLMmgWR0CoeDVPFefJdX2UKGgGaAloD0MILiC0Hr4MB8CUhpRSlGgVSzJoFkdAqHgTIT4+KXV9lChoBmgJaA9DCJWcE3toHwrAlIaUUpRoFUsyaBZHQKh5IJu2qkx1fZQoaAZoCWgPQwjlJf+Tv1sJwJSGlFKUaBVLMmgWR0CoeP4Vh1DCdX2UKGgGaAloD0MIycuaWOAr+b+UhpRSlGgVSzJoFkdAqHjbiwSrYHV9lChoBmgJaA9DCBke+1ks5QTAlIaUUpRoFUsyaBZHQKh4uQA+6iF1fZQoaAZoCWgPQwh2wHXFjHAEwJSGlFKUaBVLMmgWR0CoeckdNnGsdX2UKGgGaAloD0MI9ntinSo/DMCUhpRSlGgVSzJoFkdAqHmmlMyrP3V9lChoBmgJaA9DCDs3bcZpSP2/lIaUUpRoFUsyaBZHQKh5g/pMYdh1fZQoaAZoCWgPQwgVdHtJY7Tvv5SGlFKUaBVLMmgWR0CoeWFyBCladX2UKGgGaAloD0MIYCFzZVBNAcCUhpRSlGgVSzJoFkdAqHpys4ku6HV9lChoBmgJaA9DCJePpKSHIfi/lIaUUpRoFUsyaBZHQKh6UB1cMVl1fZQoaAZoCWgPQwgN38K68e78v5SGlFKUaBVLMmgWR0Coei2fChvjdX2UKGgGaAloD0MI0nE1sivt8L+UhpRSlGgVSzJoFkdAqHoLIkqto3V9lChoBmgJaA9DCMAHr13aMP2/lIaUUpRoFUsyaBZHQKh7HyIYWLx1fZQoaAZoCWgPQwjcR25Num34v5SGlFKUaBVLMmgWR0CoevyFfzBidX2UKGgGaAloD0MIEMtmDkltAcCUhpRSlGgVSzJoFkdAqHraFfzBh3V9lChoBmgJaA9DCLadtkYEgwDAlIaUUpRoFUsyaBZHQKh6t5a/yoZ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.4.0-147-generic-x86_64-with-glibc2.35 # 164-Ubuntu SMP Tue Mar 21 14:23:17 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}