File size: 2,457 Bytes
60789b1 f08f18f 60789b1 f08f18f 60789b1 f08f18f 60789b1 f08f18f 60789b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9365918097754293
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2033
- Accuracy: 0.9366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.3125 | 0.9684 | 23 | 0.3341 | 0.8732 |
| 0.2977 | 1.9789 | 47 | 0.2943 | 0.9062 |
| 0.2677 | 2.9895 | 71 | 0.2374 | 0.9168 |
| 0.2483 | 4.0 | 95 | 0.2230 | 0.9207 |
| 0.2331 | 4.9684 | 118 | 0.2198 | 0.9234 |
| 0.2315 | 5.9789 | 142 | 0.2150 | 0.9181 |
| 0.2249 | 6.9895 | 166 | 0.2177 | 0.9234 |
| 0.1683 | 8.0 | 190 | 0.2068 | 0.9326 |
| 0.1725 | 8.9684 | 213 | 0.2040 | 0.9366 |
| 0.1789 | 9.6842 | 230 | 0.2033 | 0.9366 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|