--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9365918097754293 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2033 - Accuracy: 0.9366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3125 | 0.9684 | 23 | 0.3341 | 0.8732 | | 0.2977 | 1.9789 | 47 | 0.2943 | 0.9062 | | 0.2677 | 2.9895 | 71 | 0.2374 | 0.9168 | | 0.2483 | 4.0 | 95 | 0.2230 | 0.9207 | | 0.2331 | 4.9684 | 118 | 0.2198 | 0.9234 | | 0.2315 | 5.9789 | 142 | 0.2150 | 0.9181 | | 0.2249 | 6.9895 | 166 | 0.2177 | 0.9234 | | 0.1683 | 8.0 | 190 | 0.2068 | 0.9326 | | 0.1725 | 8.9684 | 213 | 0.2040 | 0.9366 | | 0.1789 | 9.6842 | 230 | 0.2033 | 0.9366 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1