--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finalterm results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- # swinv2-tiny-patch4-window8-256-finalterm This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2805 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3578 | 1.0 | 10 | 1.2444 | 0.475 | | 1.1054 | 2.0 | 20 | 0.9180 | 0.6531 | | 0.8485 | 3.0 | 30 | 0.6632 | 0.725 | | 0.674 | 4.0 | 40 | 0.4736 | 0.7969 | | 0.5968 | 5.0 | 50 | 0.4341 | 0.8125 | | 0.508 | 6.0 | 60 | 0.5391 | 0.8187 | | 0.4852 | 7.0 | 70 | 0.3906 | 0.8344 | | 0.4354 | 8.0 | 80 | 0.3257 | 0.8656 | | 0.4165 | 9.0 | 90 | 0.3478 | 0.8656 | | 0.4385 | 10.0 | 100 | 0.3114 | 0.8781 | | 0.4156 | 11.0 | 110 | 0.3461 | 0.8781 | | 0.4055 | 12.0 | 120 | 0.3108 | 0.8844 | | 0.4282 | 13.0 | 130 | 0.2916 | 0.8875 | | 0.3546 | 14.0 | 140 | 0.2972 | 0.9 | | 0.3608 | 15.0 | 150 | 0.3428 | 0.8688 | | 0.369 | 16.0 | 160 | 0.2885 | 0.8969 | | 0.3525 | 17.0 | 170 | 0.2861 | 0.9 | | 0.338 | 18.0 | 180 | 0.2832 | 0.9062 | | 0.3633 | 19.0 | 190 | 0.2797 | 0.9031 | | 0.3712 | 20.0 | 200 | 0.2805 | 0.9 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1