--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finalterm results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.89375 --- # swinv2-tiny-patch4-window8-256-finalterm This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3096 - Accuracy: 0.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3728 | 1.0 | 10 | 1.2644 | 0.5156 | | 1.1308 | 2.0 | 20 | 0.8816 | 0.625 | | 0.8721 | 3.0 | 30 | 0.6829 | 0.7063 | | 0.6919 | 4.0 | 40 | 0.5298 | 0.8063 | | 0.5876 | 5.0 | 50 | 0.4100 | 0.8688 | | 0.5504 | 6.0 | 60 | 0.4153 | 0.8531 | | 0.459 | 7.0 | 70 | 0.3828 | 0.8594 | | 0.4501 | 8.0 | 80 | 0.3941 | 0.8625 | | 0.4312 | 9.0 | 90 | 0.3650 | 0.8719 | | 0.4119 | 10.0 | 100 | 0.3515 | 0.875 | | 0.4014 | 11.0 | 110 | 0.3110 | 0.8969 | | 0.3896 | 12.0 | 120 | 0.3030 | 0.9031 | | 0.3822 | 13.0 | 130 | 0.3473 | 0.8812 | | 0.3985 | 14.0 | 140 | 0.3288 | 0.8875 | | 0.3826 | 15.0 | 150 | 0.2925 | 0.9 | | 0.3716 | 16.0 | 160 | 0.3619 | 0.875 | | 0.365 | 17.0 | 170 | 0.2941 | 0.9 | | 0.3379 | 18.0 | 180 | 0.3239 | 0.8844 | | 0.3365 | 19.0 | 190 | 0.3260 | 0.8906 | | 0.3429 | 20.0 | 200 | 0.3096 | 0.8938 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1