--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finalterm results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.88125 --- # vit-base-patch16-224-finalterm This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3547 - Accuracy: 0.8812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3999 | 1.0 | 10 | 1.1607 | 0.5094 | | 0.993 | 2.0 | 20 | 0.7807 | 0.7031 | | 0.6819 | 3.0 | 30 | 0.5753 | 0.8063 | | 0.5485 | 4.0 | 40 | 0.6475 | 0.7594 | | 0.463 | 5.0 | 50 | 0.4393 | 0.8406 | | 0.3929 | 6.0 | 60 | 0.4067 | 0.8625 | | 0.3636 | 7.0 | 70 | 0.3626 | 0.8875 | | 0.3719 | 8.0 | 80 | 0.3613 | 0.8875 | | 0.343 | 9.0 | 90 | 0.3624 | 0.8781 | | 0.3297 | 10.0 | 100 | 0.3800 | 0.8625 | | 0.2948 | 11.0 | 110 | 0.3320 | 0.8938 | | 0.33 | 12.0 | 120 | 0.3481 | 0.8781 | | 0.3281 | 13.0 | 130 | 0.3418 | 0.8875 | | 0.3 | 14.0 | 140 | 0.3425 | 0.8844 | | 0.3014 | 15.0 | 150 | 0.3547 | 0.8812 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1