--- tags: - hojjatk/mnist-dataset - handwriting-recognition - classification - deep-learning metrics: accuracy: '0.96' precision: '0.96' recall: '0.96' dataset: name: hojjatk/mnist-dataset type: image license: mit downloads: count: 0 --- # Handwriting Recognition Model This is a trained model for handwriting recognition using **hojjatk/mnist-dataset** dataset. ## Usage ```python model = torch.load("mnsit_digit_nn") model.eval() ``` ## Training Param: epochs = 1 batch_size = 64 learning_rate = 0.001 ## Model Architectue: ['(conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))', '(conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))', '(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)', '(fc1): Linear(in_features=1568, out_features=128, bias=True)', '(fc2): Linear(in_features=128, out_features=10, bias=True)'] ## Evaluation Results - Accuracy: 0.96 - Precision: 0.96 - Recall: 0.96