visheratin
commited on
Commit
·
d6d35ed
1
Parent(s):
9c984a5
Update model files
Browse files- processing_llava.py +101 -0
processing_llava.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Llava.
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
23 |
+
from transformers.image_utils import ImageInput
|
24 |
+
from transformers.tokenization_utils_base import (
|
25 |
+
PaddingStrategy,
|
26 |
+
PreTokenizedInput,
|
27 |
+
TextInput,
|
28 |
+
TruncationStrategy,
|
29 |
+
)
|
30 |
+
from transformers.utils import TensorType
|
31 |
+
import torch
|
32 |
+
from open_clip.transform import PreprocessCfg, image_transform_v2
|
33 |
+
|
34 |
+
|
35 |
+
class OpenCLIPImageProcessor:
|
36 |
+
def __init__(self, config):
|
37 |
+
cfg = PreprocessCfg(**config)
|
38 |
+
transform = image_transform_v2(cfg=cfg, is_train=False)
|
39 |
+
self.transform = transform
|
40 |
+
|
41 |
+
def __call__(self, image, return_tensors):
|
42 |
+
if isinstance(image, list):
|
43 |
+
outputs = []
|
44 |
+
for item in image:
|
45 |
+
outputs.append(self.transform(item))
|
46 |
+
return {
|
47 |
+
"pixel_values": torch.tensor(outputs),
|
48 |
+
}
|
49 |
+
output = self.transform(image)
|
50 |
+
return {
|
51 |
+
"pixel_values": output.unsqueeze(0),
|
52 |
+
}
|
53 |
+
|
54 |
+
@property
|
55 |
+
def model_input_names(self):
|
56 |
+
return ["pixel_values"]
|
57 |
+
|
58 |
+
|
59 |
+
class LlavaProcessor:
|
60 |
+
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer):
|
61 |
+
self.image_processor = image_processor
|
62 |
+
self.tokenizer = tokenizer
|
63 |
+
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
text: Union[
|
67 |
+
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
68 |
+
] = None,
|
69 |
+
images: ImageInput = None,
|
70 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
71 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
72 |
+
max_length=None,
|
73 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
74 |
+
) -> BatchFeature:
|
75 |
+
if images is not None:
|
76 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)[
|
77 |
+
"pixel_values"
|
78 |
+
]
|
79 |
+
else:
|
80 |
+
pixel_values = None
|
81 |
+
text_inputs = self.tokenizer(
|
82 |
+
text,
|
83 |
+
return_tensors=return_tensors,
|
84 |
+
padding=padding,
|
85 |
+
truncation=truncation,
|
86 |
+
max_length=max_length,
|
87 |
+
)
|
88 |
+
|
89 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
90 |
+
|
91 |
+
def batch_decode(self, *args, **kwargs):
|
92 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
93 |
+
|
94 |
+
def decode(self, *args, **kwargs):
|
95 |
+
return self.tokenizer.decode(*args, **kwargs)
|
96 |
+
|
97 |
+
@property
|
98 |
+
def model_input_names(self):
|
99 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
100 |
+
image_processor_input_names = self.image_processor.model_input_names
|
101 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|