--- datasets: - liuhaotian/LLaVA-Pretrain - liuhaotian/LLaVA-Instruct-150K language: - en tags: - llava - phi license: mit --- # LLaVA-3b Open In Colab ## Model details LLaVA-3b is a model fine-tuned from [Dolphin 2.6 Phi](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2) in a LLaVA fashion using vision tower from [SigLIP 400M](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384). There are a couple of things different from the original LLaVA architecture: 1. Multiple image tokens. The multimodal projector generates embeddings of shape [5, 2560] instead of [1, 2560] for images. The idea is that using more tokens allows us to get more info from the image into the language model. 2. The model uses the output from the latest layer of the vision encoder instead of the intermediate one. 3. The context length during training was 1200 tokens, as the L4 GPUs I used didn't allow me to get more. As Dolphin 2.6 Phi, LLaVA-3b uses ChatML prompt format: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## How to use **Install dependencies** ``` !pip install -q open_clip_torch timm einops ``` **Download modeling files** ``` from huggingface_hub import hf_hub_download hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="configuration_llava.py", local_dir="./", force_download=True) hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="configuration_phi.py", local_dir="./", force_download=True) hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="modeling_llava.py", local_dir="./", force_download=True) hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="modeling_phi.py", local_dir="./", force_download=True) hf_hub_download(repo_id="visheratin/LLaVA-3b", filename="processing_llava.py", local_dir="./", force_download=True) ``` **Create a model** ``` from modeling_llava import LlavaForConditionalGeneration import torch model = LlavaForConditionalGeneration.from_pretrained("visheratin/LLaVA-3b", torch_dtype=torch.float16) model = model.to("cuda") ``` **Create processors** ``` from transformers import AutoTokenizer from processing_llava import LlavaProcessor, OpenCLIPImageProcessor tokenizer = AutoTokenizer.from_pretrained("visheratin/LLaVA-3b") image_processor = OpenCLIPImageProcessor(model.config.preprocess_config) processor = LlavaProcessor(image_processor, tokenizer) ``` **Set image and text** ``` from PIL import Image import requests image_file = "https://images.unsplash.com/photo-1439246854758-f686a415d9da" raw_image = Image.open(requests.get(image_file, stream=True).raw) prompt = """<|im_start|>system A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. The assistant does not hallucinate and pays very close attention to the details.<|im_end|> <|im_start|>user Describe the image.<|im_end|> <|im_start|>assistant """ ``` **Process inputs** ``` inputs = processor(prompt, raw_image, model, return_tensors='pt') inputs['input_ids'] = inputs['input_ids'].to(model.device) inputs['attention_mask'] = inputs['attention_mask'].to(model.device) ``` **Generate the data** ``` output = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.5, temperature=1.2, eos_token_id=tokenizer.eos_token_id) ``` ## Benchmarks - TextVQA - 33.25% - GQA - 47.15% - VQAv2 - 63.1% - VizWiz - 24.03% ## Acknowledgments Thanks to [ML Collective](https://mlcollective.org/) for providing credits for computing resources.