update model card README.md
Browse files
README.md
CHANGED
@@ -10,8 +10,6 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: kg_model
|
12 |
results: []
|
13 |
-
datasets:
|
14 |
-
- vishnun/NLP-KnowledgeGraph
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -19,17 +17,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
# kg_model
|
21 |
|
22 |
-
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
32 |
-
|
33 |
|
34 |
## Intended uses & limitations
|
35 |
|
@@ -56,15 +54,15 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
-
- Transformers 4.
|
68 |
- Pytorch 1.13.1+cu116
|
69 |
-
- Datasets 2.
|
70 |
-
- Tokenizers 0.13.2
|
|
|
10 |
model-index:
|
11 |
- name: kg_model
|
12 |
results: []
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
17 |
|
18 |
# kg_model
|
19 |
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3039
|
23 |
+
- Precision: 0.7629
|
24 |
+
- Recall: 0.7025
|
25 |
+
- F1: 0.7315
|
26 |
+
- Accuracy: 0.8965
|
27 |
|
28 |
## Model description
|
29 |
|
30 |
+
More information needed
|
31 |
|
32 |
## Intended uses & limitations
|
33 |
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.3736 | 1.0 | 1063 | 0.3379 | 0.7542 | 0.6217 | 0.6816 | 0.8813 |
|
58 |
+
| 0.3078 | 2.0 | 2126 | 0.3075 | 0.7728 | 0.6678 | 0.7164 | 0.8929 |
|
59 |
+
| 0.267 | 3.0 | 3189 | 0.3017 | 0.7597 | 0.6999 | 0.7285 | 0.8954 |
|
60 |
+
| 0.2455 | 4.0 | 4252 | 0.3039 | 0.7629 | 0.7025 | 0.7315 | 0.8965 |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
+
- Transformers 4.27.3
|
66 |
- Pytorch 1.13.1+cu116
|
67 |
+
- Datasets 2.10.1
|
68 |
+
- Tokenizers 0.13.2
|