vishnun commited on
Commit
64bf8bf
·
1 Parent(s): b9a0336

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -16
README.md CHANGED
@@ -10,8 +10,6 @@ metrics:
10
  model-index:
11
  - name: kg_model
12
  results: []
13
- datasets:
14
- - vishnun/NLP-KnowledgeGraph
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -19,17 +17,17 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # kg_model
21
 
22
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the custom built dataset from publicaly available sentences dataset in Kaggle dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.2587
25
- - Precision: 0.8356
26
- - Recall: 0.8057
27
- - F1: 0.8204
28
- - Accuracy: 0.9170
29
 
30
  ## Model description
31
 
32
- Finetuned model for knowledge graph creation in NLP. The dataset(~20k) was created by creating KG using the spaCy library. The original dataset is available in [kaggle](https://www.kaggle.com/datasets/mfekadu/sentences)
33
 
34
  ## Intended uses & limitations
35
 
@@ -56,15 +54,15 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.4931 | 1.0 | 957 | 0.3031 | 0.7872 | 0.7592 | 0.7729 | 0.8935 |
60
- | 0.2693 | 2.0 | 1914 | 0.2645 | 0.8345 | 0.7868 | 0.8100 | 0.9110 |
61
- | 0.2142 | 3.0 | 2871 | 0.2602 | 0.8330 | 0.7980 | 0.8152 | 0.9152 |
62
- | 0.1894 | 4.0 | 3828 | 0.2587 | 0.8356 | 0.8057 | 0.8204 | 0.9170 |
63
 
64
 
65
  ### Framework versions
66
 
67
- - Transformers 4.26.0
68
  - Pytorch 1.13.1+cu116
69
- - Datasets 2.9.0
70
- - Tokenizers 0.13.2
 
10
  model-index:
11
  - name: kg_model
12
  results: []
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # kg_model
19
 
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.3039
23
+ - Precision: 0.7629
24
+ - Recall: 0.7025
25
+ - F1: 0.7315
26
+ - Accuracy: 0.8965
27
 
28
  ## Model description
29
 
30
+ More information needed
31
 
32
  ## Intended uses & limitations
33
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.3736 | 1.0 | 1063 | 0.3379 | 0.7542 | 0.6217 | 0.6816 | 0.8813 |
58
+ | 0.3078 | 2.0 | 2126 | 0.3075 | 0.7728 | 0.6678 | 0.7164 | 0.8929 |
59
+ | 0.267 | 3.0 | 3189 | 0.3017 | 0.7597 | 0.6999 | 0.7285 | 0.8954 |
60
+ | 0.2455 | 4.0 | 4252 | 0.3039 | 0.7629 | 0.7025 | 0.7315 | 0.8965 |
61
 
62
 
63
  ### Framework versions
64
 
65
+ - Transformers 4.27.3
66
  - Pytorch 1.13.1+cu116
67
+ - Datasets 2.10.1
68
+ - Tokenizers 0.13.2