File size: 1,403 Bytes
7fb34e4 38d8d3d 7fb34e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language: vi
tags:
- spam-detection
- vietnamese
- phobert
license: apache-2.0
datasets:
- visolex/ViSpamReviews
metrics:
- accuracy
- f1
model-index:
- name: phobert-spam-binary
results:
- task:
type: text-classification
name: Spam Detection (Binary)
dataset:
name: ViSpamReviews
type: custom
metrics:
- name: Accuracy
type: accuracy
value: <INSERT_ACCURACY>
- name: F1 Score
type: f1
value: <INSERT_F1_SCORE>
base_model:
- vinai/phobert-base
pipeline_tag: text-classification
---
# PhoBERT-Spam-Binary
Fine-tuned from [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base) on **ViSpamReviews** (binary).
* **Task**: Binary classification (0 = non-spam, 1 = spam)
* **Dataset**: [ViSpamReviews](https://huggingface.co/datasets/visolex/ViSpamReviews)
* **Hyperparameters**
* Batch size: 32
* LR: 3e-5
* Epochs: 100
* Max seq len: 256
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-spam-binary")
model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-spam-binary")
text = "Đánh giá ảo hoàn toàn!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
pred = model(**inputs).logits.argmax(dim=-1).item()
print("Spam" if pred==1 else "Non-spam")
``` |